L(s) = 1 | + (−1.36 + 0.366i)2-s + (−1.36 + 1.36i)3-s + (1.73 − i)4-s + (−2.36 − 2.36i)5-s + (1.36 − 2.36i)6-s + (−1.99 + 2i)8-s − 0.732i·9-s + (4.09 + 2.36i)10-s + (3.09 + 3.09i)11-s + (−0.999 + 3.73i)12-s + (−0.267 + 0.267i)13-s + 6.46·15-s + (1.99 − 3.46i)16-s + 0.464·17-s + (0.267 + 0.999i)18-s + (3.09 − 3.09i)19-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)2-s + (−0.788 + 0.788i)3-s + (0.866 − 0.5i)4-s + (−1.05 − 1.05i)5-s + (0.557 − 0.965i)6-s + (−0.707 + 0.707i)8-s − 0.244i·9-s + (1.29 + 0.748i)10-s + (0.934 + 0.934i)11-s + (−0.288 + 1.07i)12-s + (−0.0743 + 0.0743i)13-s + 1.66·15-s + (0.499 − 0.866i)16-s + 0.112·17-s + (0.0631 + 0.235i)18-s + (0.710 − 0.710i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.36 - 0.366i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.36 - 1.36i)T - 3iT^{2} \) |
| 5 | \( 1 + (2.36 + 2.36i)T + 5iT^{2} \) |
| 11 | \( 1 + (-3.09 - 3.09i)T + 11iT^{2} \) |
| 13 | \( 1 + (0.267 - 0.267i)T - 13iT^{2} \) |
| 17 | \( 1 - 0.464T + 17T^{2} \) |
| 19 | \( 1 + (-3.09 + 3.09i)T - 19iT^{2} \) |
| 23 | \( 1 - 2.46iT - 23T^{2} \) |
| 29 | \( 1 + (3.73 - 3.73i)T - 29iT^{2} \) |
| 31 | \( 1 + 0.267T + 31T^{2} \) |
| 37 | \( 1 + (7.83 + 7.83i)T + 37iT^{2} \) |
| 41 | \( 1 - 8.92iT - 41T^{2} \) |
| 43 | \( 1 + (0.464 + 0.464i)T + 43iT^{2} \) |
| 47 | \( 1 + 7.73T + 47T^{2} \) |
| 53 | \( 1 + (8.09 + 8.09i)T + 53iT^{2} \) |
| 59 | \( 1 + (7.29 + 7.29i)T + 59iT^{2} \) |
| 61 | \( 1 + (-0.0980 + 0.0980i)T - 61iT^{2} \) |
| 67 | \( 1 + (-5.36 + 5.36i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.46iT - 71T^{2} \) |
| 73 | \( 1 - 3.19iT - 73T^{2} \) |
| 79 | \( 1 - 0.660T + 79T^{2} \) |
| 83 | \( 1 + (8.46 - 8.46i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.19iT - 89T^{2} \) |
| 97 | \( 1 + 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.612785424709615844385367785056, −9.387835964224976867192975635238, −8.300926489616201349192235555156, −7.50885126110115301466016460625, −6.63273863027633782512375676789, −5.30549178648335961445073499112, −4.76706309762078478434151348488, −3.62652588910295396165505489556, −1.55425575286534673563271250846, 0,
1.38203089650446728811353210491, 3.07634088112798048759782239035, 3.82579587435936753097565315061, 5.82270197927015150250279661891, 6.57080556558247233605756915087, 7.20680115779047307891574116541, 7.924047185219944588683962056354, 8.825958945551441231431294848270, 9.930422391119578029265481123283