L(s) = 1 | + (−1.41 − 2.44i)3-s + (1.41 − 2.44i)5-s + (−2.49 + 4.33i)9-s + (−2 − 3.46i)11-s + 2.82·13-s − 8·15-s + (−2.82 − 4.89i)17-s + (1.41 − 2.44i)19-s + (−1.49 − 2.59i)25-s + 5.65·27-s + 2·29-s + (2.82 + 4.89i)31-s + (−5.65 + 9.79i)33-s + (−5 + 8.66i)37-s + (−4.00 − 6.92i)39-s + ⋯ |
L(s) = 1 | + (−0.816 − 1.41i)3-s + (0.632 − 1.09i)5-s + (−0.833 + 1.44i)9-s + (−0.603 − 1.04i)11-s + 0.784·13-s − 2.06·15-s + (−0.685 − 1.18i)17-s + (0.324 − 0.561i)19-s + (−0.299 − 0.519i)25-s + 1.08·27-s + 0.371·29-s + (0.508 + 0.879i)31-s + (−0.984 + 1.70i)33-s + (−0.821 + 1.42i)37-s + (−0.640 − 1.10i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0644185 + 1.01510i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0644185 + 1.01510i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (1.41 + 2.44i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.41 + 2.44i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2 + 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 + (2.82 + 4.89i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 + 2.44i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 + (-2.82 - 4.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5 - 8.66i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.65T + 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (2.82 - 4.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 + 5.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.41 - 2.44i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.07 + 12.2i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 14.1T + 83T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 5.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.834068147368146015171310102766, −8.698039374095817700249505291910, −8.260954216280067232538894504814, −7.03986785392424284806571631429, −6.36219104339578296897381600332, −5.43933138638671895470052479897, −4.88760341803873286245698793861, −2.92962681727128631462039570471, −1.53454617662963567977193443293, −0.57869028615880613105835254746,
2.17477154628923005311713845606, 3.55972908980583426825362757868, 4.38046965216307404292258623915, 5.48865138604822597556330434656, 6.14589314338855186807137694312, 7.02078636387979086199643010283, 8.322961338348044462070714695804, 9.440470831772266843837051101946, 10.15177255797167025413408455635, 10.57911746355247026279336256714