L(s) = 1 | + (1.5 + 2.59i)9-s + (2 − 3.46i)11-s + (4 + 6.92i)23-s + (2.5 − 4.33i)25-s + 2·29-s + (3 + 5.19i)37-s + 12·43-s + (5 − 8.66i)53-s + (2 − 3.46i)67-s − 16·71-s + (4 + 6.92i)79-s + (−4.5 + 7.79i)81-s + 12·99-s + (−10 − 17.3i)107-s + (−9 + 15.5i)109-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)9-s + (0.603 − 1.04i)11-s + (0.834 + 1.44i)23-s + (0.5 − 0.866i)25-s + 0.371·29-s + (0.493 + 0.854i)37-s + 1.82·43-s + (0.686 − 1.18i)53-s + (0.244 − 0.423i)67-s − 1.89·71-s + (0.450 + 0.779i)79-s + (−0.5 + 0.866i)81-s + 1.20·99-s + (−0.966 − 1.67i)107-s + (−0.862 + 1.49i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.67093 + 0.106037i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.67093 + 0.106037i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4 - 6.92i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3 - 5.19i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5 + 8.66i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 16T + 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38187217000862441395582993407, −9.443538981855195754142310424490, −8.601496357107932162719582229730, −7.76976371199354797625952189785, −6.86917580118826050726950422152, −5.88597164984551868472163443226, −4.93281723194342072687458241464, −3.87753582944241538986659644053, −2.70757154290335912035174292591, −1.20903961340541875322938612455,
1.12841179400576921434623352143, 2.62577199349411742179891815778, 3.96240444354551282811832752739, 4.69580960775803873789133841995, 5.99269046729600287746644129766, 6.89261007070198055991557205592, 7.47677292364731850174481204849, 8.861310055164679123751109167298, 9.303195903446622637082562170068, 10.25299085848919381388883783340