L(s) = 1 | − 0.347·2-s − 0.879·4-s + 0.347·7-s + 0.652·8-s − 1.53·11-s + 1.53·13-s − 0.120·14-s + 0.652·16-s + 1.87·17-s + 0.532·22-s + 25-s − 0.532·26-s − 0.305·28-s − 29-s − 0.879·32-s − 0.652·34-s + 41-s + 1.34·44-s + 1.87·47-s − 0.879·49-s − 0.347·50-s − 1.34·52-s + 0.226·56-s + 0.347·58-s − 0.347·64-s − 1.87·67-s − 1.65·68-s + ⋯ |
L(s) = 1 | − 0.347·2-s − 0.879·4-s + 0.347·7-s + 0.652·8-s − 1.53·11-s + 1.53·13-s − 0.120·14-s + 0.652·16-s + 1.87·17-s + 0.532·22-s + 25-s − 0.532·26-s − 0.305·28-s − 29-s − 0.879·32-s − 0.652·34-s + 41-s + 1.34·44-s + 1.87·47-s − 0.879·49-s − 0.347·50-s − 1.34·52-s + 0.226·56-s + 0.347·58-s − 0.347·64-s − 1.87·67-s − 1.65·68-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7215807945\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7215807945\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 0.347T + T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 7 | \( 1 - 0.347T + T^{2} \) |
| 11 | \( 1 + 1.53T + T^{2} \) |
| 13 | \( 1 - 1.53T + T^{2} \) |
| 17 | \( 1 - 1.87T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.87T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 1.87T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 1.53T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54246163295777669749684612194, −9.629950041970534913569198171816, −8.734894616587127232260737300374, −8.017031260255429137846727603460, −7.43927119451755162368170634009, −5.81111035021783967658538256772, −5.28101135715859422394691132078, −4.11252499666238415612896202582, −3.04710235328819663014331000612, −1.22701418896861080350007978609,
1.22701418896861080350007978609, 3.04710235328819663014331000612, 4.11252499666238415612896202582, 5.28101135715859422394691132078, 5.81111035021783967658538256772, 7.43927119451755162368170634009, 8.017031260255429137846727603460, 8.734894616587127232260737300374, 9.629950041970534913569198171816, 10.54246163295777669749684612194