Properties

Label 2-783-87.86-c0-0-1
Degree $2$
Conductor $783$
Sign $1$
Analytic cond. $0.390767$
Root an. cond. $0.625114$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.347·2-s − 0.879·4-s + 0.347·7-s + 0.652·8-s − 1.53·11-s + 1.53·13-s − 0.120·14-s + 0.652·16-s + 1.87·17-s + 0.532·22-s + 25-s − 0.532·26-s − 0.305·28-s − 29-s − 0.879·32-s − 0.652·34-s + 41-s + 1.34·44-s + 1.87·47-s − 0.879·49-s − 0.347·50-s − 1.34·52-s + 0.226·56-s + 0.347·58-s − 0.347·64-s − 1.87·67-s − 1.65·68-s + ⋯
L(s)  = 1  − 0.347·2-s − 0.879·4-s + 0.347·7-s + 0.652·8-s − 1.53·11-s + 1.53·13-s − 0.120·14-s + 0.652·16-s + 1.87·17-s + 0.532·22-s + 25-s − 0.532·26-s − 0.305·28-s − 29-s − 0.879·32-s − 0.652·34-s + 41-s + 1.34·44-s + 1.87·47-s − 0.879·49-s − 0.347·50-s − 1.34·52-s + 0.226·56-s + 0.347·58-s − 0.347·64-s − 1.87·67-s − 1.65·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(783\)    =    \(3^{3} \cdot 29\)
Sign: $1$
Analytic conductor: \(0.390767\)
Root analytic conductor: \(0.625114\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{783} (782, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 783,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7215807945\)
\(L(\frac12)\) \(\approx\) \(0.7215807945\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 0.347T + T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - 0.347T + T^{2} \)
11 \( 1 + 1.53T + T^{2} \)
13 \( 1 - 1.53T + T^{2} \)
17 \( 1 - 1.87T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.87T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 1.87T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 1.53T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.54246163295777669749684612194, −9.629950041970534913569198171816, −8.734894616587127232260737300374, −8.017031260255429137846727603460, −7.43927119451755162368170634009, −5.81111035021783967658538256772, −5.28101135715859422394691132078, −4.11252499666238415612896202582, −3.04710235328819663014331000612, −1.22701418896861080350007978609, 1.22701418896861080350007978609, 3.04710235328819663014331000612, 4.11252499666238415612896202582, 5.28101135715859422394691132078, 5.81111035021783967658538256772, 7.43927119451755162368170634009, 8.017031260255429137846727603460, 8.734894616587127232260737300374, 9.629950041970534913569198171816, 10.54246163295777669749684612194

Graph of the $Z$-function along the critical line