Properties

Label 2-7803-1.1-c1-0-62
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.55·2-s + 0.403·4-s − 1.95·5-s − 0.219·7-s − 2.47·8-s − 3.03·10-s − 0.381·11-s − 0.251·13-s − 0.340·14-s − 4.64·16-s − 5.53·19-s − 0.790·20-s − 0.590·22-s − 0.466·23-s − 1.16·25-s − 0.390·26-s − 0.0887·28-s − 3.49·29-s − 0.155·31-s − 2.25·32-s + 0.429·35-s + 9.10·37-s − 8.57·38-s + 4.84·40-s + 6.55·41-s + 7.56·43-s − 0.153·44-s + ⋯
L(s)  = 1  + 1.09·2-s + 0.201·4-s − 0.875·5-s − 0.0830·7-s − 0.874·8-s − 0.959·10-s − 0.114·11-s − 0.0697·13-s − 0.0910·14-s − 1.16·16-s − 1.26·19-s − 0.176·20-s − 0.125·22-s − 0.0972·23-s − 0.233·25-s − 0.0764·26-s − 0.0167·28-s − 0.648·29-s − 0.0279·31-s − 0.398·32-s + 0.0726·35-s + 1.49·37-s − 1.39·38-s + 0.765·40-s + 1.02·41-s + 1.15·43-s − 0.0232·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.664819441\)
\(L(\frac12)\) \(\approx\) \(1.664819441\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.55T + 2T^{2} \)
5 \( 1 + 1.95T + 5T^{2} \)
7 \( 1 + 0.219T + 7T^{2} \)
11 \( 1 + 0.381T + 11T^{2} \)
13 \( 1 + 0.251T + 13T^{2} \)
19 \( 1 + 5.53T + 19T^{2} \)
23 \( 1 + 0.466T + 23T^{2} \)
29 \( 1 + 3.49T + 29T^{2} \)
31 \( 1 + 0.155T + 31T^{2} \)
37 \( 1 - 9.10T + 37T^{2} \)
41 \( 1 - 6.55T + 41T^{2} \)
43 \( 1 - 7.56T + 43T^{2} \)
47 \( 1 - 5.19T + 47T^{2} \)
53 \( 1 + 6.96T + 53T^{2} \)
59 \( 1 + 1.15T + 59T^{2} \)
61 \( 1 - 2.51T + 61T^{2} \)
67 \( 1 + 9.92T + 67T^{2} \)
71 \( 1 - 9.29T + 71T^{2} \)
73 \( 1 + 6.94T + 73T^{2} \)
79 \( 1 - 3.31T + 79T^{2} \)
83 \( 1 + 1.48T + 83T^{2} \)
89 \( 1 - 1.72T + 89T^{2} \)
97 \( 1 - 16.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79570273476716363340116712072, −7.11300068435997735807368124492, −6.13010778708071435758160498372, −5.87033328548893872001988281824, −4.77142287511627023612936644921, −4.31210797798314084192527761368, −3.75754911813318210467412739666, −2.94032307871489461923138489545, −2.10782351121796248837253563343, −0.51833172783843970652803372759, 0.51833172783843970652803372759, 2.10782351121796248837253563343, 2.94032307871489461923138489545, 3.75754911813318210467412739666, 4.31210797798314084192527761368, 4.77142287511627023612936644921, 5.87033328548893872001988281824, 6.13010778708071435758160498372, 7.11300068435997735807368124492, 7.79570273476716363340116712072

Graph of the $Z$-function along the critical line