Properties

Label 2-7803-1.1-c1-0-108
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.533·2-s − 1.71·4-s − 2.01·5-s + 2.52·7-s − 1.98·8-s − 1.07·10-s + 2.43·11-s + 3.12·13-s + 1.34·14-s + 2.37·16-s + 5.61·19-s + 3.45·20-s + 1.29·22-s + 2.17·23-s − 0.937·25-s + 1.66·26-s − 4.33·28-s + 4.75·29-s − 4.46·31-s + 5.22·32-s − 5.09·35-s − 4.68·37-s + 2.99·38-s + 3.99·40-s + 9.39·41-s − 9.70·43-s − 4.17·44-s + ⋯
L(s)  = 1  + 0.377·2-s − 0.857·4-s − 0.901·5-s + 0.955·7-s − 0.700·8-s − 0.339·10-s + 0.733·11-s + 0.867·13-s + 0.360·14-s + 0.593·16-s + 1.28·19-s + 0.773·20-s + 0.276·22-s + 0.454·23-s − 0.187·25-s + 0.327·26-s − 0.819·28-s + 0.882·29-s − 0.802·31-s + 0.924·32-s − 0.861·35-s − 0.770·37-s + 0.486·38-s + 0.631·40-s + 1.46·41-s − 1.47·43-s − 0.629·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.005808449\)
\(L(\frac12)\) \(\approx\) \(2.005808449\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 - 0.533T + 2T^{2} \)
5 \( 1 + 2.01T + 5T^{2} \)
7 \( 1 - 2.52T + 7T^{2} \)
11 \( 1 - 2.43T + 11T^{2} \)
13 \( 1 - 3.12T + 13T^{2} \)
19 \( 1 - 5.61T + 19T^{2} \)
23 \( 1 - 2.17T + 23T^{2} \)
29 \( 1 - 4.75T + 29T^{2} \)
31 \( 1 + 4.46T + 31T^{2} \)
37 \( 1 + 4.68T + 37T^{2} \)
41 \( 1 - 9.39T + 41T^{2} \)
43 \( 1 + 9.70T + 43T^{2} \)
47 \( 1 - 10.4T + 47T^{2} \)
53 \( 1 + 2.83T + 53T^{2} \)
59 \( 1 + 3.50T + 59T^{2} \)
61 \( 1 - 7.88T + 61T^{2} \)
67 \( 1 + 4.16T + 67T^{2} \)
71 \( 1 + 4.51T + 71T^{2} \)
73 \( 1 + 12.5T + 73T^{2} \)
79 \( 1 + 4.52T + 79T^{2} \)
83 \( 1 - 10.8T + 83T^{2} \)
89 \( 1 - 16.2T + 89T^{2} \)
97 \( 1 + 0.802T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82573316837858191047793497902, −7.36713270608599682180437644094, −6.37264213737723481218863751143, −5.58577318639165164089722451982, −4.94590439360919124530848355670, −4.26100917841579179305442975454, −3.70073003415813777244393513385, −3.04032528407837810721015178605, −1.56568142854101104248678048457, −0.72793956518572982232248437244, 0.72793956518572982232248437244, 1.56568142854101104248678048457, 3.04032528407837810721015178605, 3.70073003415813777244393513385, 4.26100917841579179305442975454, 4.94590439360919124530848355670, 5.58577318639165164089722451982, 6.37264213737723481218863751143, 7.36713270608599682180437644094, 7.82573316837858191047793497902

Graph of the $Z$-function along the critical line