Properties

Label 2-7803-1.1-c1-0-337
Degree $2$
Conductor $7803$
Sign $-1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·2-s + 1.00·4-s − 0.674·5-s + 3.57·7-s − 1.72·8-s − 1.16·10-s + 2.26·11-s − 0.0370·13-s + 6.20·14-s − 4.99·16-s − 3.16·19-s − 0.676·20-s + 3.92·22-s − 3.82·23-s − 4.54·25-s − 0.0641·26-s + 3.58·28-s − 7.83·29-s − 9.64·31-s − 5.20·32-s − 2.41·35-s + 2.75·37-s − 5.47·38-s + 1.16·40-s − 4.21·41-s − 2.65·43-s + 2.26·44-s + ⋯
L(s)  = 1  + 1.22·2-s + 0.501·4-s − 0.301·5-s + 1.35·7-s − 0.611·8-s − 0.369·10-s + 0.682·11-s − 0.0102·13-s + 1.65·14-s − 1.24·16-s − 0.725·19-s − 0.151·20-s + 0.836·22-s − 0.798·23-s − 0.908·25-s − 0.0125·26-s + 0.678·28-s − 1.45·29-s − 1.73·31-s − 0.920·32-s − 0.408·35-s + 0.452·37-s − 0.888·38-s + 0.184·40-s − 0.657·41-s − 0.404·43-s + 0.342·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.73T + 2T^{2} \)
5 \( 1 + 0.674T + 5T^{2} \)
7 \( 1 - 3.57T + 7T^{2} \)
11 \( 1 - 2.26T + 11T^{2} \)
13 \( 1 + 0.0370T + 13T^{2} \)
19 \( 1 + 3.16T + 19T^{2} \)
23 \( 1 + 3.82T + 23T^{2} \)
29 \( 1 + 7.83T + 29T^{2} \)
31 \( 1 + 9.64T + 31T^{2} \)
37 \( 1 - 2.75T + 37T^{2} \)
41 \( 1 + 4.21T + 41T^{2} \)
43 \( 1 + 2.65T + 43T^{2} \)
47 \( 1 - 6.51T + 47T^{2} \)
53 \( 1 - 0.0248T + 53T^{2} \)
59 \( 1 + 4.54T + 59T^{2} \)
61 \( 1 + 0.235T + 61T^{2} \)
67 \( 1 + 2.75T + 67T^{2} \)
71 \( 1 - 10.9T + 71T^{2} \)
73 \( 1 + 10.9T + 73T^{2} \)
79 \( 1 - 3.39T + 79T^{2} \)
83 \( 1 + 8.75T + 83T^{2} \)
89 \( 1 - 18.1T + 89T^{2} \)
97 \( 1 + 18.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51122415441980015282935926447, −6.64448734203619844410206566361, −5.83915190646267378736526870172, −5.37236477862228936779206784960, −4.57017417551962938458719075558, −3.99034967704808123450811389156, −3.54218893578909179334142909627, −2.25288645173641097167328586203, −1.64219736243972341659803653282, 0, 1.64219736243972341659803653282, 2.25288645173641097167328586203, 3.54218893578909179334142909627, 3.99034967704808123450811389156, 4.57017417551962938458719075558, 5.37236477862228936779206784960, 5.83915190646267378736526870172, 6.64448734203619844410206566361, 7.51122415441980015282935926447

Graph of the $Z$-function along the critical line