Properties

Label 2-7803-1.1-c1-0-151
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.494·2-s − 1.75·4-s + 1.77·5-s + 3.57·7-s + 1.85·8-s − 0.879·10-s + 2.98·11-s − 1.32·13-s − 1.76·14-s + 2.59·16-s + 3.01·19-s − 3.12·20-s − 1.47·22-s − 6.89·23-s − 1.83·25-s + 0.657·26-s − 6.26·28-s + 9.41·29-s − 1.84·31-s − 4.99·32-s + 6.35·35-s + 10.8·37-s − 1.49·38-s + 3.30·40-s + 10.1·41-s − 1.79·43-s − 5.24·44-s + ⋯
L(s)  = 1  − 0.349·2-s − 0.877·4-s + 0.795·5-s + 1.34·7-s + 0.656·8-s − 0.278·10-s + 0.900·11-s − 0.368·13-s − 0.471·14-s + 0.648·16-s + 0.692·19-s − 0.698·20-s − 0.314·22-s − 1.43·23-s − 0.366·25-s + 0.128·26-s − 1.18·28-s + 1.74·29-s − 0.330·31-s − 0.883·32-s + 1.07·35-s + 1.77·37-s − 0.242·38-s + 0.522·40-s + 1.58·41-s − 0.273·43-s − 0.790·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.172459350\)
\(L(\frac12)\) \(\approx\) \(2.172459350\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 + 0.494T + 2T^{2} \)
5 \( 1 - 1.77T + 5T^{2} \)
7 \( 1 - 3.57T + 7T^{2} \)
11 \( 1 - 2.98T + 11T^{2} \)
13 \( 1 + 1.32T + 13T^{2} \)
19 \( 1 - 3.01T + 19T^{2} \)
23 \( 1 + 6.89T + 23T^{2} \)
29 \( 1 - 9.41T + 29T^{2} \)
31 \( 1 + 1.84T + 31T^{2} \)
37 \( 1 - 10.8T + 37T^{2} \)
41 \( 1 - 10.1T + 41T^{2} \)
43 \( 1 + 1.79T + 43T^{2} \)
47 \( 1 - 0.646T + 47T^{2} \)
53 \( 1 + 2.51T + 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 - 7.75T + 61T^{2} \)
67 \( 1 + 8.74T + 67T^{2} \)
71 \( 1 - 1.90T + 71T^{2} \)
73 \( 1 + 2.95T + 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 - 2.19T + 83T^{2} \)
89 \( 1 - 3.83T + 89T^{2} \)
97 \( 1 - 5.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80163813188376950067299447136, −7.56360787881755736271878160089, −6.24781655853175654276082926900, −5.85712435329158977205109224159, −4.83735280800898268784880611062, −4.53691656256615857999722463950, −3.69448809272673141537102030309, −2.43845235647555638036026496989, −1.59771236527726032787245165059, −0.855734307296194371988869652679, 0.855734307296194371988869652679, 1.59771236527726032787245165059, 2.43845235647555638036026496989, 3.69448809272673141537102030309, 4.53691656256615857999722463950, 4.83735280800898268784880611062, 5.85712435329158977205109224159, 6.24781655853175654276082926900, 7.56360787881755736271878160089, 7.80163813188376950067299447136

Graph of the $Z$-function along the critical line