Properties

Label 2-7803-1.1-c1-0-41
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.04·2-s − 0.900·4-s − 3.57·5-s − 2.24·7-s + 3.04·8-s + 3.75·10-s + 2.87·11-s + 3.07·13-s + 2.35·14-s − 1.38·16-s − 6.73·19-s + 3.22·20-s − 3.01·22-s − 4.87·23-s + 7.80·25-s − 3.22·26-s + 2.02·28-s + 7.37·29-s + 9.15·31-s − 4.62·32-s + 8.03·35-s − 2.35·37-s + 7.05·38-s − 10.8·40-s + 2.27·41-s + 9.91·43-s − 2.58·44-s + ⋯
L(s)  = 1  − 0.741·2-s − 0.450·4-s − 1.60·5-s − 0.849·7-s + 1.07·8-s + 1.18·10-s + 0.866·11-s + 0.851·13-s + 0.629·14-s − 0.347·16-s − 1.54·19-s + 0.720·20-s − 0.642·22-s − 1.01·23-s + 1.56·25-s − 0.631·26-s + 0.382·28-s + 1.36·29-s + 1.64·31-s − 0.817·32-s + 1.35·35-s − 0.386·37-s + 1.14·38-s − 1.72·40-s + 0.355·41-s + 1.51·43-s − 0.390·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4617290192\)
\(L(\frac12)\) \(\approx\) \(0.4617290192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 + 1.04T + 2T^{2} \)
5 \( 1 + 3.57T + 5T^{2} \)
7 \( 1 + 2.24T + 7T^{2} \)
11 \( 1 - 2.87T + 11T^{2} \)
13 \( 1 - 3.07T + 13T^{2} \)
19 \( 1 + 6.73T + 19T^{2} \)
23 \( 1 + 4.87T + 23T^{2} \)
29 \( 1 - 7.37T + 29T^{2} \)
31 \( 1 - 9.15T + 31T^{2} \)
37 \( 1 + 2.35T + 37T^{2} \)
41 \( 1 - 2.27T + 41T^{2} \)
43 \( 1 - 9.91T + 43T^{2} \)
47 \( 1 + 3.13T + 47T^{2} \)
53 \( 1 - 6.76T + 53T^{2} \)
59 \( 1 + 5.79T + 59T^{2} \)
61 \( 1 + 12.9T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 + 2.69T + 71T^{2} \)
73 \( 1 + 6.90T + 73T^{2} \)
79 \( 1 + 13.6T + 79T^{2} \)
83 \( 1 - 6.42T + 83T^{2} \)
89 \( 1 - 12.8T + 89T^{2} \)
97 \( 1 + 2.82T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.954638746704886802643732329615, −7.43148706483028751073133502989, −6.44359807847083345242345834910, −6.17648335836947517886134789741, −4.64221317795122048905212697414, −4.23660558859418350202979254653, −3.72562581299524097398458146187, −2.79806085965698988950179881249, −1.35888439581494419708550846335, −0.41919934208408298726848080591, 0.41919934208408298726848080591, 1.35888439581494419708550846335, 2.79806085965698988950179881249, 3.72562581299524097398458146187, 4.23660558859418350202979254653, 4.64221317795122048905212697414, 6.17648335836947517886134789741, 6.44359807847083345242345834910, 7.43148706483028751073133502989, 7.954638746704886802643732329615

Graph of the $Z$-function along the critical line