Properties

Label 2-7803-1.1-c1-0-78
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.16·2-s − 0.653·4-s − 2.03·5-s − 0.829·7-s − 3.07·8-s − 2.36·10-s + 3.14·11-s + 5.93·13-s − 0.962·14-s − 2.26·16-s − 0.890·19-s + 1.33·20-s + 3.64·22-s − 1.52·23-s − 0.844·25-s + 6.89·26-s + 0.541·28-s − 5.21·29-s + 2.32·31-s + 3.52·32-s + 1.69·35-s − 6.89·37-s − 1.03·38-s + 6.27·40-s + 3.86·41-s − 8.42·43-s − 2.05·44-s + ⋯
L(s)  = 1  + 0.820·2-s − 0.326·4-s − 0.911·5-s − 0.313·7-s − 1.08·8-s − 0.748·10-s + 0.948·11-s + 1.64·13-s − 0.257·14-s − 0.566·16-s − 0.204·19-s + 0.297·20-s + 0.777·22-s − 0.317·23-s − 0.168·25-s + 1.35·26-s + 0.102·28-s − 0.968·29-s + 0.417·31-s + 0.623·32-s + 0.285·35-s − 1.13·37-s − 0.167·38-s + 0.992·40-s + 0.603·41-s − 1.28·43-s − 0.309·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.817623886\)
\(L(\frac12)\) \(\approx\) \(1.817623886\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 - 1.16T + 2T^{2} \)
5 \( 1 + 2.03T + 5T^{2} \)
7 \( 1 + 0.829T + 7T^{2} \)
11 \( 1 - 3.14T + 11T^{2} \)
13 \( 1 - 5.93T + 13T^{2} \)
19 \( 1 + 0.890T + 19T^{2} \)
23 \( 1 + 1.52T + 23T^{2} \)
29 \( 1 + 5.21T + 29T^{2} \)
31 \( 1 - 2.32T + 31T^{2} \)
37 \( 1 + 6.89T + 37T^{2} \)
41 \( 1 - 3.86T + 41T^{2} \)
43 \( 1 + 8.42T + 43T^{2} \)
47 \( 1 - 6.88T + 47T^{2} \)
53 \( 1 - 8.30T + 53T^{2} \)
59 \( 1 + 4.25T + 59T^{2} \)
61 \( 1 + 13.7T + 61T^{2} \)
67 \( 1 - 11.3T + 67T^{2} \)
71 \( 1 + 11.0T + 71T^{2} \)
73 \( 1 - 2.19T + 73T^{2} \)
79 \( 1 - 14.9T + 79T^{2} \)
83 \( 1 - 2.93T + 83T^{2} \)
89 \( 1 - 5.22T + 89T^{2} \)
97 \( 1 - 7.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.917613527851395310469634845189, −7.00811362803303674830005916824, −6.24876705735129105695602214737, −5.86198466785401937943460057955, −4.88797981476877626801319593465, −4.10912944809265014611618883616, −3.67136083578994914572664934092, −3.22130413033005050966225329895, −1.80193815228895716872661962057, −0.59824258185447156172206348048, 0.59824258185447156172206348048, 1.80193815228895716872661962057, 3.22130413033005050966225329895, 3.67136083578994914572664934092, 4.10912944809265014611618883616, 4.88797981476877626801319593465, 5.86198466785401937943460057955, 6.24876705735129105695602214737, 7.00811362803303674830005916824, 7.917613527851395310469634845189

Graph of the $Z$-function along the critical line