Properties

Label 2-7803-1.1-c1-0-258
Degree $2$
Conductor $7803$
Sign $-1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.417·2-s − 1.82·4-s + 2.09·5-s + 0.600·7-s + 1.59·8-s − 0.876·10-s + 1.33·11-s − 5.18·13-s − 0.250·14-s + 2.98·16-s − 1.50·19-s − 3.83·20-s − 0.557·22-s + 3.77·23-s − 0.590·25-s + 2.16·26-s − 1.09·28-s + 3.55·29-s − 4.74·31-s − 4.44·32-s + 1.26·35-s + 2.84·37-s + 0.630·38-s + 3.35·40-s + 3.52·41-s − 5.10·43-s − 2.43·44-s + ⋯
L(s)  = 1  − 0.295·2-s − 0.912·4-s + 0.939·5-s + 0.226·7-s + 0.564·8-s − 0.277·10-s + 0.402·11-s − 1.43·13-s − 0.0670·14-s + 0.746·16-s − 0.346·19-s − 0.857·20-s − 0.118·22-s + 0.787·23-s − 0.118·25-s + 0.424·26-s − 0.207·28-s + 0.659·29-s − 0.853·31-s − 0.784·32-s + 0.213·35-s + 0.468·37-s + 0.102·38-s + 0.530·40-s + 0.550·41-s − 0.778·43-s − 0.367·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 + 0.417T + 2T^{2} \)
5 \( 1 - 2.09T + 5T^{2} \)
7 \( 1 - 0.600T + 7T^{2} \)
11 \( 1 - 1.33T + 11T^{2} \)
13 \( 1 + 5.18T + 13T^{2} \)
19 \( 1 + 1.50T + 19T^{2} \)
23 \( 1 - 3.77T + 23T^{2} \)
29 \( 1 - 3.55T + 29T^{2} \)
31 \( 1 + 4.74T + 31T^{2} \)
37 \( 1 - 2.84T + 37T^{2} \)
41 \( 1 - 3.52T + 41T^{2} \)
43 \( 1 + 5.10T + 43T^{2} \)
47 \( 1 - 4.80T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 - 3.45T + 59T^{2} \)
61 \( 1 - 0.0714T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 - 7.13T + 71T^{2} \)
73 \( 1 - 10.8T + 73T^{2} \)
79 \( 1 + 14.5T + 79T^{2} \)
83 \( 1 - 15.9T + 83T^{2} \)
89 \( 1 + 12.3T + 89T^{2} \)
97 \( 1 - 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61916184681479140188215273670, −6.85806277816430042068557033018, −6.08605295288977587562855132562, −5.25459681475748349906626156423, −4.82455083707384140455157517860, −4.06741810712500574372796818510, −3.02975382388875612089916254469, −2.10717631948407697402955060341, −1.24657621208496626303171251754, 0, 1.24657621208496626303171251754, 2.10717631948407697402955060341, 3.02975382388875612089916254469, 4.06741810712500574372796818510, 4.82455083707384140455157517860, 5.25459681475748349906626156423, 6.08605295288977587562855132562, 6.85806277816430042068557033018, 7.61916184681479140188215273670

Graph of the $Z$-function along the critical line