L(s) = 1 | + (0.923 + 0.382i)2-s + (−0.707 + 0.707i)3-s + (0.707 + 0.707i)4-s + (−0.923 + 0.382i)5-s + (−0.923 + 0.382i)6-s + (0.382 + 0.923i)8-s − 1.00i·9-s − 10-s + 1.84i·11-s − 12-s + (−0.707 − 0.707i)13-s + (0.382 − 0.923i)15-s + i·16-s + (0.382 − 0.923i)18-s + (−0.923 − 0.382i)20-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)2-s + (−0.707 + 0.707i)3-s + (0.707 + 0.707i)4-s + (−0.923 + 0.382i)5-s + (−0.923 + 0.382i)6-s + (0.382 + 0.923i)8-s − 1.00i·9-s − 10-s + 1.84i·11-s − 12-s + (−0.707 − 0.707i)13-s + (0.382 − 0.923i)15-s + i·16-s + (0.382 − 0.923i)18-s + (−0.923 − 0.382i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.084189923\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.084189923\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 - 0.382i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 13 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 - 1.84iT - T^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - 1.84T + T^{2} \) |
| 43 | \( 1 + (-1 + i)T - iT^{2} \) |
| 47 | \( 1 + (0.541 + 0.541i)T + iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + 0.765T + T^{2} \) |
| 61 | \( 1 - 1.41T + T^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + 0.765iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - 1.41T + T^{2} \) |
| 83 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 89 | \( 1 + 0.765iT - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.88192246542961899551236561688, −10.24299242530797312641836268850, −9.211740677811477021265448191962, −7.79035692331428616660805384950, −7.26570775918751243890094896669, −6.38473594573395854140513704524, −5.23561900098749589649437331303, −4.53233777382393395300249165279, −3.80816078315282093946308497366, −2.55981604785848211945927088360,
0.963637430751299600179650989659, 2.61197408844993564883939665468, 3.83575788377267315833126603121, 4.82226986219530633967222512238, 5.71134374192436262323547506838, 6.51580522601161658942486060423, 7.45254566894655162223462532979, 8.279448933893937888871606136105, 9.459426940639252288413509627634, 10.85191274929674357447953968193