Properties

Label 2-780-195.194-c0-0-3
Degree $2$
Conductor $780$
Sign $1$
Analytic cond. $0.389270$
Root an. cond. $0.623915$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s + 9-s − 11-s + 13-s + 15-s − 17-s − 21-s − 23-s + 25-s + 27-s − 33-s − 35-s − 37-s + 39-s − 41-s + 45-s − 51-s − 53-s − 55-s + 2·59-s − 61-s − 63-s + 65-s + 2·67-s − 69-s + ⋯
L(s)  = 1  + 3-s + 5-s − 7-s + 9-s − 11-s + 13-s + 15-s − 17-s − 21-s − 23-s + 25-s + 27-s − 33-s − 35-s − 37-s + 39-s − 41-s + 45-s − 51-s − 53-s − 55-s + 2·59-s − 61-s − 63-s + 65-s + 2·67-s − 69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(780\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(0.389270\)
Root analytic conductor: \(0.623915\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{780} (389, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 780,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.373512862\)
\(L(\frac12)\) \(\approx\) \(1.373512862\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 + T + T^{2} \)
11 \( 1 + T + T^{2} \)
17 \( 1 + T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T + T^{2} \)
29 \( ( 1 - T )( 1 + T ) \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( 1 + T + T^{2} \)
41 \( 1 + T + T^{2} \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T + T^{2} \)
59 \( ( 1 - T )^{2} \)
61 \( 1 + T + T^{2} \)
67 \( ( 1 - T )^{2} \)
71 \( 1 + T + T^{2} \)
73 \( ( 1 - T )^{2} \)
79 \( 1 + T + T^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( 1 + T + T^{2} \)
97 \( 1 + T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19260980509239076389115833106, −9.721400366742269413647765018980, −8.807292923041514421843744068884, −8.192305477960500833928622295629, −6.93474393578243008538082252137, −6.28772661967044870940123184783, −5.18253183070206301185928134390, −3.85750901483639670229666836381, −2.87044116647691062621589106057, −1.89260733917123567951299870818, 1.89260733917123567951299870818, 2.87044116647691062621589106057, 3.85750901483639670229666836381, 5.18253183070206301185928134390, 6.28772661967044870940123184783, 6.93474393578243008538082252137, 8.192305477960500833928622295629, 8.807292923041514421843744068884, 9.721400366742269413647765018980, 10.19260980509239076389115833106

Graph of the $Z$-function along the critical line