Properties

Label 2-7774-1.1-c1-0-269
Degree $2$
Conductor $7774$
Sign $-1$
Analytic cond. $62.0757$
Root an. cond. $7.87881$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.92·3-s + 4-s + 1.30·5-s − 2.92·6-s − 0.0744·7-s − 8-s + 5.56·9-s − 1.30·10-s − 5.65·11-s + 2.92·12-s + 0.0744·14-s + 3.83·15-s + 16-s − 4.00·17-s − 5.56·18-s − 2.23·19-s + 1.30·20-s − 0.217·21-s + 5.65·22-s + 23-s − 2.92·24-s − 3.28·25-s + 7.49·27-s − 0.0744·28-s + 1.67·29-s − 3.83·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.68·3-s + 0.5·4-s + 0.585·5-s − 1.19·6-s − 0.0281·7-s − 0.353·8-s + 1.85·9-s − 0.414·10-s − 1.70·11-s + 0.844·12-s + 0.0198·14-s + 0.989·15-s + 0.250·16-s − 0.972·17-s − 1.31·18-s − 0.512·19-s + 0.292·20-s − 0.0475·21-s + 1.20·22-s + 0.208·23-s − 0.597·24-s − 0.656·25-s + 1.44·27-s − 0.0140·28-s + 0.310·29-s − 0.699·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7774 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7774 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7774\)    =    \(2 \cdot 13^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(62.0757\)
Root analytic conductor: \(7.87881\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7774,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
13 \( 1 \)
23 \( 1 - T \)
good3 \( 1 - 2.92T + 3T^{2} \)
5 \( 1 - 1.30T + 5T^{2} \)
7 \( 1 + 0.0744T + 7T^{2} \)
11 \( 1 + 5.65T + 11T^{2} \)
17 \( 1 + 4.00T + 17T^{2} \)
19 \( 1 + 2.23T + 19T^{2} \)
29 \( 1 - 1.67T + 29T^{2} \)
31 \( 1 + 8.30T + 31T^{2} \)
37 \( 1 + 2.31T + 37T^{2} \)
41 \( 1 - 3.38T + 41T^{2} \)
43 \( 1 - 3.97T + 43T^{2} \)
47 \( 1 + 2.02T + 47T^{2} \)
53 \( 1 - 5.91T + 53T^{2} \)
59 \( 1 + 10.6T + 59T^{2} \)
61 \( 1 + 9.43T + 61T^{2} \)
67 \( 1 - 8.32T + 67T^{2} \)
71 \( 1 + 6.76T + 71T^{2} \)
73 \( 1 + 2.97T + 73T^{2} \)
79 \( 1 - 0.878T + 79T^{2} \)
83 \( 1 - 16.8T + 83T^{2} \)
89 \( 1 - 6.49T + 89T^{2} \)
97 \( 1 + 7.71T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.75925153396923305965936480321, −7.17973471113352318736526101407, −6.32780611278410047621352294490, −5.45519675682762924475433692873, −4.57130341538513705472443186841, −3.62707953870245869684240808567, −2.78337731706362846850480772991, −2.27862125835957135677677095536, −1.65655895987127195804766047055, 0, 1.65655895987127195804766047055, 2.27862125835957135677677095536, 2.78337731706362846850480772991, 3.62707953870245869684240808567, 4.57130341538513705472443186841, 5.45519675682762924475433692873, 6.32780611278410047621352294490, 7.17973471113352318736526101407, 7.75925153396923305965936480321

Graph of the $Z$-function along the critical line