L(s) = 1 | + 1.73i·3-s − 2·4-s + (−2 − 1.73i)7-s − 2.99·9-s − 3.46i·12-s + (1 + 1.73i)13-s + 4·16-s + (3.5 − 6.06i)19-s + (2.99 − 3.46i)21-s + (−2.5 − 4.33i)25-s − 5.19i·27-s + (4 + 3.46i)28-s + (2 − 3.46i)31-s + 5.99·36-s + (5 − 3.46i)37-s + ⋯ |
L(s) = 1 | + 0.999i·3-s − 4-s + (−0.755 − 0.654i)7-s − 0.999·9-s − 0.999i·12-s + (0.277 + 0.480i)13-s + 16-s + (0.802 − 1.39i)19-s + (0.654 − 0.755i)21-s + (−0.5 − 0.866i)25-s − 0.999i·27-s + (0.755 + 0.654i)28-s + (0.359 − 0.622i)31-s + 0.999·36-s + (0.821 − 0.569i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.697 + 0.716i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.700707 - 0.295794i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.700707 - 0.295794i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
| 37 | \( 1 + (-5 + 3.46i)T \) |
good | 2 | \( 1 + 2T^{2} \) |
| 5 | \( 1 + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 - 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.5 + 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (-2 + 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 41 | \( 1 + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 - 1.73iT - 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7 + 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 - 16T + 67T^{2} \) |
| 71 | \( 1 + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (12 + 6.92i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (15 + 8.66i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + 19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.885263366114113452008666727557, −9.549742246656140919643155742855, −8.763061513352824345524696761918, −7.81012622966164620292617883531, −6.58599723602549628109480463623, −5.56756781800964845637403600258, −4.54569734401035336000842802753, −3.94316772696914432880306835692, −2.90010432838798019437564602629, −0.45312227027854184447384262704,
1.22943307150464249275969380415, 2.86173165378875759116575484023, 3.80903686958232423216235871790, 5.42771141803457542641790543433, 5.82170899407284218869629900321, 6.97540197310310198222060402745, 8.007982848200112035410719532157, 8.571281317405663989893582541517, 9.512243829071499683183242705188, 10.17543921108565168963988433819