Properties

Label 2-777-1.1-c1-0-33
Degree $2$
Conductor $777$
Sign $-1$
Analytic cond. $6.20437$
Root an. cond. $2.49085$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.09·2-s − 3-s + 2.40·4-s − 3.89·5-s − 2.09·6-s + 7-s + 0.859·8-s + 9-s − 8.18·10-s − 2.92·11-s − 2.40·12-s + 3.41·13-s + 2.09·14-s + 3.89·15-s − 3.01·16-s − 6.66·17-s + 2.09·18-s − 6.95·19-s − 9.38·20-s − 21-s − 6.14·22-s − 6.75·23-s − 0.859·24-s + 10.1·25-s + 7.17·26-s − 27-s + 2.40·28-s + ⋯
L(s)  = 1  + 1.48·2-s − 0.577·3-s + 1.20·4-s − 1.74·5-s − 0.857·6-s + 0.377·7-s + 0.303·8-s + 0.333·9-s − 2.58·10-s − 0.882·11-s − 0.695·12-s + 0.947·13-s + 0.561·14-s + 1.00·15-s − 0.753·16-s − 1.61·17-s + 0.494·18-s − 1.59·19-s − 2.09·20-s − 0.218·21-s − 1.31·22-s − 1.40·23-s − 0.175·24-s + 2.03·25-s + 1.40·26-s − 0.192·27-s + 0.455·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(777\)    =    \(3 \cdot 7 \cdot 37\)
Sign: $-1$
Analytic conductor: \(6.20437\)
Root analytic conductor: \(2.49085\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 777,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
37 \( 1 - T \)
good2 \( 1 - 2.09T + 2T^{2} \)
5 \( 1 + 3.89T + 5T^{2} \)
11 \( 1 + 2.92T + 11T^{2} \)
13 \( 1 - 3.41T + 13T^{2} \)
17 \( 1 + 6.66T + 17T^{2} \)
19 \( 1 + 6.95T + 19T^{2} \)
23 \( 1 + 6.75T + 23T^{2} \)
29 \( 1 - 8.13T + 29T^{2} \)
31 \( 1 - 1.12T + 31T^{2} \)
41 \( 1 + 10.1T + 41T^{2} \)
43 \( 1 - 2.77T + 43T^{2} \)
47 \( 1 - 1.17T + 47T^{2} \)
53 \( 1 - 4.72T + 53T^{2} \)
59 \( 1 - 6.57T + 59T^{2} \)
61 \( 1 - 4.29T + 61T^{2} \)
67 \( 1 - 2.59T + 67T^{2} \)
71 \( 1 - 3.11T + 71T^{2} \)
73 \( 1 + 3.37T + 73T^{2} \)
79 \( 1 - 0.388T + 79T^{2} \)
83 \( 1 - 8.59T + 83T^{2} \)
89 \( 1 - 1.50T + 89T^{2} \)
97 \( 1 + 14.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51440656506158926285558488063, −8.591074500573775882948810465449, −8.170137377123793391209235949722, −6.88263599479949070822142644667, −6.29835145018245947465178040100, −5.07653920475216648487411433897, −4.29211710614106725633861121696, −3.86588035761105296039027722876, −2.44898604832710716284751517981, 0, 2.44898604832710716284751517981, 3.86588035761105296039027722876, 4.29211710614106725633861121696, 5.07653920475216648487411433897, 6.29835145018245947465178040100, 6.88263599479949070822142644667, 8.170137377123793391209235949722, 8.591074500573775882948810465449, 10.51440656506158926285558488063

Graph of the $Z$-function along the critical line