L(s) = 1 | + i·3-s + 4-s + (0.866 + 0.5i)5-s − 7-s − 9-s + (0.866 + 0.5i)11-s + i·12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)15-s + 16-s + (−0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (0.866 + 0.5i)20-s − i·21-s + (−0.866 + 0.5i)23-s + ⋯ |
L(s) = 1 | + i·3-s + 4-s + (0.866 + 0.5i)5-s − 7-s − 9-s + (0.866 + 0.5i)11-s + i·12-s + (−0.5 − 0.866i)13-s + (−0.5 + 0.866i)15-s + 16-s + (−0.866 + 0.5i)17-s + (0.5 − 0.866i)19-s + (0.866 + 0.5i)20-s − i·21-s + (−0.866 + 0.5i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.425 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.212808711\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.212808711\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - iT \) |
| 7 | \( 1 + T \) |
| 37 | \( 1 - T \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 2iT - T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43180022472442512098251705907, −9.870918594307933278462353035157, −9.430311670465312924872780039620, −8.133377617388657497031285231344, −6.92066712265916453693601821692, −6.26176059763080605983809641583, −5.57332785068276997031796581400, −4.15760415999655718854245728554, −3.05491057066444790022857253562, −2.24965620941129184699631826439,
1.50771856147652828742694032624, 2.41266520564424045586557182043, 3.61627435696262122129021532020, 5.40108501579479997664772065949, 6.24450487259573893895048261507, 6.71036483436032288389613866602, 7.51734788629130145078975354565, 8.780700043928270070380000832686, 9.385986655692561758725758469378, 10.34410250834405517083825140894