L(s) = 1 | + (−0.939 + 0.342i)3-s + (−0.766 − 0.642i)4-s − 7-s + (0.766 − 0.642i)9-s + (0.939 + 0.342i)12-s + (0.673 + 1.85i)13-s + (0.173 + 0.984i)16-s + (−1.11 + 1.32i)19-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)25-s + (−0.500 + 0.866i)27-s + (0.766 + 0.642i)28-s + (0.592 − 0.342i)31-s − 36-s + (−0.5 + 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.939 + 0.342i)3-s + (−0.766 − 0.642i)4-s − 7-s + (0.766 − 0.642i)9-s + (0.939 + 0.342i)12-s + (0.673 + 1.85i)13-s + (0.173 + 0.984i)16-s + (−1.11 + 1.32i)19-s + (0.939 − 0.342i)21-s + (−0.766 + 0.642i)25-s + (−0.500 + 0.866i)27-s + (0.766 + 0.642i)28-s + (0.592 − 0.342i)31-s − 36-s + (−0.5 + 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.143 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.143 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3720296216\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3720296216\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.939 - 0.342i)T \) |
| 7 | \( 1 + T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 5 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.673 - 1.85i)T + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 19 | \( 1 + (1.11 - 1.32i)T + (-0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.592 + 0.342i)T + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + 0.684iT - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.266 - 1.50i)T + (-0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 73 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.439 + 1.20i)T + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (1.70 + 0.984i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57008465198323157020068653453, −9.915666829976862979858638965970, −9.305177857040408127375865314966, −8.469626671094307059361437379045, −6.87518531422060853260931088610, −6.24792613239786661224373416374, −5.56746701396616661728465704199, −4.28981678469545985136620235094, −3.83373276505690075670602368233, −1.60727652200769884972551269242,
0.45806896902558064508807683772, 2.76259999285446846418709928358, 3.88394317398880926729111227264, 4.94711107904113831967751849462, 5.89240315793775249092160838656, 6.69727813674763632698352667171, 7.73053919483997010492946099681, 8.479982768565164484013773894235, 9.501526482721713009162472049678, 10.37907576607918876387998157158