L(s) = 1 | + (0.206 − 0.284i)2-s + (2.87 − 0.302i)3-s + (0.579 + 1.78i)4-s + (0.508 − 0.880i)6-s + (−0.224 + 1.05i)7-s + (1.29 + 0.420i)8-s + (5.25 − 1.11i)9-s + (−1.62 + 1.80i)11-s + (2.20 + 4.95i)12-s + (1.16 − 2.62i)13-s + (0.254 + 0.282i)14-s + (−2.64 + 1.92i)16-s + (1.35 − 1.22i)17-s + (0.767 − 1.72i)18-s + (−1.93 + 0.861i)19-s + ⋯ |
L(s) = 1 | + (0.146 − 0.201i)2-s + (1.66 − 0.174i)3-s + (0.289 + 0.892i)4-s + (0.207 − 0.359i)6-s + (−0.0850 + 0.400i)7-s + (0.458 + 0.148i)8-s + (1.75 − 0.372i)9-s + (−0.490 + 0.544i)11-s + (0.637 + 1.43i)12-s + (0.324 − 0.728i)13-s + (0.0680 + 0.0755i)14-s + (−0.662 + 0.481i)16-s + (0.328 − 0.296i)17-s + (0.180 − 0.406i)18-s + (−0.443 + 0.197i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.930 - 0.365i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.930 - 0.365i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.97795 + 0.563680i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.97795 + 0.563680i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 31 | \( 1 + (-1.15 + 5.44i)T \) |
good | 2 | \( 1 + (-0.206 + 0.284i)T + (-0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-2.87 + 0.302i)T + (2.93 - 0.623i)T^{2} \) |
| 7 | \( 1 + (0.224 - 1.05i)T + (-6.39 - 2.84i)T^{2} \) |
| 11 | \( 1 + (1.62 - 1.80i)T + (-1.14 - 10.9i)T^{2} \) |
| 13 | \( 1 + (-1.16 + 2.62i)T + (-8.69 - 9.66i)T^{2} \) |
| 17 | \( 1 + (-1.35 + 1.22i)T + (1.77 - 16.9i)T^{2} \) |
| 19 | \( 1 + (1.93 - 0.861i)T + (12.7 - 14.1i)T^{2} \) |
| 23 | \( 1 + (-0.420 - 0.136i)T + (18.6 + 13.5i)T^{2} \) |
| 29 | \( 1 + (2.55 + 1.85i)T + (8.96 + 27.5i)T^{2} \) |
| 37 | \( 1 + (2.72 + 1.57i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.726 + 6.90i)T + (-40.1 - 8.52i)T^{2} \) |
| 43 | \( 1 + (-3.42 - 7.68i)T + (-28.7 + 31.9i)T^{2} \) |
| 47 | \( 1 + (-4.67 - 6.44i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (1.03 + 4.86i)T + (-48.4 + 21.5i)T^{2} \) |
| 59 | \( 1 + (1.25 + 11.9i)T + (-57.7 + 12.2i)T^{2} \) |
| 61 | \( 1 + 14.4T + 61T^{2} \) |
| 67 | \( 1 + (5.57 - 3.21i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.64 - 0.348i)T + (64.8 - 28.8i)T^{2} \) |
| 73 | \( 1 + (10.6 + 9.60i)T + (7.63 + 72.6i)T^{2} \) |
| 79 | \( 1 + (-2.30 - 2.56i)T + (-8.25 + 78.5i)T^{2} \) |
| 83 | \( 1 + (-12.7 - 1.34i)T + (81.1 + 17.2i)T^{2} \) |
| 89 | \( 1 + (0.698 + 2.14i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (3.24 - 1.05i)T + (78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22320757344484918810600799726, −9.264111339854792673882452170990, −8.610872907421729713207679271227, −7.62787163202177020607386360264, −7.55537639114015615203261497402, −6.07592562684779063742126078523, −4.55026304210251785495766904097, −3.55599501891780943012131427252, −2.77581432454039484835289073370, −1.98713857870675438245316399757,
1.47293405928433429612533616611, 2.61590210430647606326043197323, 3.70423404338169424521697179035, 4.67058310150547146861706765942, 5.89495812677190059182779592078, 6.96288175801200700484540052034, 7.67111715449466188045381044308, 8.756968893157243535216314656238, 9.173925900460587744245380415193, 10.36072802551251323727508967146