L(s) = 1 | + (2.55 − 0.831i)2-s + (1.05 − 0.949i)3-s + (4.23 − 3.07i)4-s + (1.90 − 3.30i)6-s + (−1.71 + 0.180i)7-s + (5.11 − 7.04i)8-s + (−0.103 + 0.980i)9-s + (−1.22 − 0.543i)11-s + (1.54 − 7.26i)12-s + (0.763 + 3.59i)13-s + (−4.24 + 1.88i)14-s + (4.00 − 12.3i)16-s + (−1.12 − 2.52i)17-s + (0.551 + 2.59i)18-s + (−2.51 − 0.533i)19-s + ⋯ |
L(s) = 1 | + (1.80 − 0.587i)2-s + (0.608 − 0.548i)3-s + (2.11 − 1.53i)4-s + (0.779 − 1.34i)6-s + (−0.649 + 0.0682i)7-s + (1.80 − 2.49i)8-s + (−0.0343 + 0.326i)9-s + (−0.368 − 0.164i)11-s + (0.446 − 2.09i)12-s + (0.211 + 0.995i)13-s + (−1.13 + 0.504i)14-s + (1.00 − 3.07i)16-s + (−0.272 − 0.612i)17-s + (0.129 + 0.611i)18-s + (−0.576 − 0.122i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.76032 - 3.20085i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.76032 - 3.20085i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 31 | \( 1 + (-4.75 - 2.90i)T \) |
good | 2 | \( 1 + (-2.55 + 0.831i)T + (1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (-1.05 + 0.949i)T + (0.313 - 2.98i)T^{2} \) |
| 7 | \( 1 + (1.71 - 0.180i)T + (6.84 - 1.45i)T^{2} \) |
| 11 | \( 1 + (1.22 + 0.543i)T + (7.36 + 8.17i)T^{2} \) |
| 13 | \( 1 + (-0.763 - 3.59i)T + (-11.8 + 5.28i)T^{2} \) |
| 17 | \( 1 + (1.12 + 2.52i)T + (-11.3 + 12.6i)T^{2} \) |
| 19 | \( 1 + (2.51 + 0.533i)T + (17.3 + 7.72i)T^{2} \) |
| 23 | \( 1 + (-0.316 + 0.436i)T + (-7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (-2.51 - 7.73i)T + (-23.4 + 17.0i)T^{2} \) |
| 37 | \( 1 + (6.70 + 3.87i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.0696 - 0.0773i)T + (-4.28 - 40.7i)T^{2} \) |
| 43 | \( 1 + (-0.624 + 2.93i)T + (-39.2 - 17.4i)T^{2} \) |
| 47 | \( 1 + (6.39 + 2.07i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.78 - 0.292i)T + (51.8 + 11.0i)T^{2} \) |
| 59 | \( 1 + (0.311 + 0.346i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + 5.11T + 61T^{2} \) |
| 67 | \( 1 + (-7.18 + 4.14i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.497 - 4.73i)T + (-69.4 - 14.7i)T^{2} \) |
| 73 | \( 1 + (-3.05 + 6.85i)T + (-48.8 - 54.2i)T^{2} \) |
| 79 | \( 1 + (-8.86 + 3.94i)T + (52.8 - 58.7i)T^{2} \) |
| 83 | \( 1 + (-12.3 - 11.1i)T + (8.67 + 82.5i)T^{2} \) |
| 89 | \( 1 + (12.3 - 9.00i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-0.751 - 1.03i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58634817820898950920047536407, −9.418909488889359707284725781807, −8.324051648677829343580090544373, −6.91374457988725700508835678017, −6.68555960083195773325208141164, −5.39127578975700232303482145040, −4.61702133173576985853916977919, −3.45325297846759451621078912370, −2.66284536325453045022685457567, −1.70989293089169840382479691044,
2.51039781284536467884713288315, 3.33506835249043110106038932642, 4.06938399010728188957953056244, 4.98140885627862960847291812460, 6.12574942693229383220486091593, 6.54509665485608967977445155553, 7.83372305623039664852178828868, 8.431112386841033600886507085480, 9.806083882672218910534023725975, 10.57331748149476826666970656652