| L(s) = 1 | + (−0.380 + 1.17i)2-s + (2.02 + 0.431i)3-s + (0.389 + 0.283i)4-s + (−1.27 + 2.21i)6-s + (3.47 − 1.54i)7-s + (−2.47 + 1.79i)8-s + (1.19 + 0.531i)9-s + (0.393 − 3.74i)11-s + (0.668 + 0.742i)12-s + (1.76 − 1.95i)13-s + (0.489 + 4.66i)14-s + (−0.866 − 2.66i)16-s + (0.394 + 3.75i)17-s + (−1.07 + 1.19i)18-s + (4.08 + 4.53i)19-s + ⋯ |
| L(s) = 1 | + (−0.269 + 0.828i)2-s + (1.17 + 0.249i)3-s + (0.194 + 0.141i)4-s + (−0.521 + 0.903i)6-s + (1.31 − 0.584i)7-s + (−0.874 + 0.635i)8-s + (0.397 + 0.177i)9-s + (0.118 − 1.12i)11-s + (0.193 + 0.214i)12-s + (0.489 − 0.543i)13-s + (0.130 + 1.24i)14-s + (−0.216 − 0.666i)16-s + (0.0956 + 0.910i)17-s + (−0.253 + 0.281i)18-s + (0.936 + 1.03i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.272 - 0.962i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.272 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.92707 + 1.45655i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.92707 + 1.45655i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 31 | \( 1 + (3.88 + 3.98i)T \) |
| good | 2 | \( 1 + (0.380 - 1.17i)T + (-1.61 - 1.17i)T^{2} \) |
| 3 | \( 1 + (-2.02 - 0.431i)T + (2.74 + 1.22i)T^{2} \) |
| 7 | \( 1 + (-3.47 + 1.54i)T + (4.68 - 5.20i)T^{2} \) |
| 11 | \( 1 + (-0.393 + 3.74i)T + (-10.7 - 2.28i)T^{2} \) |
| 13 | \( 1 + (-1.76 + 1.95i)T + (-1.35 - 12.9i)T^{2} \) |
| 17 | \( 1 + (-0.394 - 3.75i)T + (-16.6 + 3.53i)T^{2} \) |
| 19 | \( 1 + (-4.08 - 4.53i)T + (-1.98 + 18.8i)T^{2} \) |
| 23 | \( 1 + (-0.736 + 0.534i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (2.10 - 6.47i)T + (-23.4 - 17.0i)T^{2} \) |
| 37 | \( 1 + (0.907 - 1.57i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.329 - 0.0700i)T + (37.4 - 16.6i)T^{2} \) |
| 43 | \( 1 + (2.59 + 2.88i)T + (-4.49 + 42.7i)T^{2} \) |
| 47 | \( 1 + (-0.367 - 1.13i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-2.14 - 0.953i)T + (35.4 + 39.3i)T^{2} \) |
| 59 | \( 1 + (7.60 + 1.61i)T + (53.8 + 23.9i)T^{2} \) |
| 61 | \( 1 + 2.72T + 61T^{2} \) |
| 67 | \( 1 + (3.71 + 6.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.65 + 2.07i)T + (47.5 + 52.7i)T^{2} \) |
| 73 | \( 1 + (-0.563 + 5.36i)T + (-71.4 - 15.1i)T^{2} \) |
| 79 | \( 1 + (-1.01 - 9.68i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (8.21 - 1.74i)T + (75.8 - 33.7i)T^{2} \) |
| 89 | \( 1 + (4.12 + 2.99i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (-8.82 - 6.41i)T + (29.9 + 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49278483374839137071381600747, −9.177026860347860999298973556716, −8.504711775665484470762082866265, −7.969453428877856449317306244871, −7.48369718205490624580262071465, −6.13567091486493249448549112302, −5.34219924912877308427473076552, −3.80663279845126965875208173464, −3.14224075389555645231171859271, −1.61960789470263756630208142959,
1.51555686046893760107389963261, 2.24048370601894734413796709289, 3.12634982125920203799986567642, 4.49213136710224422976632021020, 5.56281911916442418432443616787, 7.01336783999271391312565704897, 7.62974461065608297465248701132, 8.753550211246302415156258445061, 9.214922634083252265927763913576, 9.974302316017232530245683662026