Properties

Label 2-7742-1.1-c1-0-255
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 1.41·3-s + 4-s + 1.41·5-s + 1.41·6-s + 8-s − 0.999·9-s + 1.41·10-s − 2·11-s + 1.41·12-s − 4.24·13-s + 2.00·15-s + 16-s − 2.82·17-s − 0.999·18-s − 3.74·19-s + 1.41·20-s − 2·22-s − 7.29·23-s + 1.41·24-s − 2.99·25-s − 4.24·26-s − 5.65·27-s + 6.93·29-s + 2.00·30-s + 8.89·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.816·3-s + 0.5·4-s + 0.632·5-s + 0.577·6-s + 0.353·8-s − 0.333·9-s + 0.447·10-s − 0.603·11-s + 0.408·12-s − 1.17·13-s + 0.516·15-s + 0.250·16-s − 0.685·17-s − 0.235·18-s − 0.858·19-s + 0.316·20-s − 0.426·22-s − 1.52·23-s + 0.288·24-s − 0.599·25-s − 0.832·26-s − 1.08·27-s + 1.28·29-s + 0.365·30-s + 1.59·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - 1.41T + 3T^{2} \)
5 \( 1 - 1.41T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 4.24T + 13T^{2} \)
17 \( 1 + 2.82T + 17T^{2} \)
19 \( 1 + 3.74T + 19T^{2} \)
23 \( 1 + 7.29T + 23T^{2} \)
29 \( 1 - 6.93T + 29T^{2} \)
31 \( 1 - 8.89T + 31T^{2} \)
37 \( 1 + 0.354T + 37T^{2} \)
41 \( 1 + 0.500T + 41T^{2} \)
43 \( 1 + 5.64T + 43T^{2} \)
47 \( 1 - 12.6T + 47T^{2} \)
53 \( 1 - 2.93T + 53T^{2} \)
59 \( 1 + 14.0T + 59T^{2} \)
61 \( 1 + 9.39T + 61T^{2} \)
67 \( 1 - 6T + 67T^{2} \)
71 \( 1 + 6.58T + 71T^{2} \)
73 \( 1 + 0.913T + 73T^{2} \)
83 \( 1 + 3.74T + 83T^{2} \)
89 \( 1 + 3.74T + 89T^{2} \)
97 \( 1 + 1.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66206504171725252791317663517, −6.63949020799732337843797873421, −6.12371617440249194703547732465, −5.40185974542953616923966006566, −4.57363630652954852334619686093, −4.02714913751285763626447043311, −2.79399711917467332032282901544, −2.55168075623193777540880155211, −1.78101169518305220235623992028, 0, 1.78101169518305220235623992028, 2.55168075623193777540880155211, 2.79399711917467332032282901544, 4.02714913751285763626447043311, 4.57363630652954852334619686093, 5.40185974542953616923966006566, 6.12371617440249194703547732465, 6.63949020799732337843797873421, 7.66206504171725252791317663517

Graph of the $Z$-function along the critical line