Properties

Label 2-7742-1.1-c1-0-177
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.41·3-s + 4-s − 1.41·5-s − 1.41·6-s + 8-s − 0.999·9-s − 1.41·10-s − 2·11-s − 1.41·12-s + 4.24·13-s + 2.00·15-s + 16-s + 2.82·17-s − 0.999·18-s − 3.74·19-s − 1.41·20-s − 2·22-s + 3.29·23-s − 1.41·24-s − 2.99·25-s + 4.24·26-s + 5.65·27-s − 8.93·29-s + 2.00·30-s + 6.06·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.816·3-s + 0.5·4-s − 0.632·5-s − 0.577·6-s + 0.353·8-s − 0.333·9-s − 0.447·10-s − 0.603·11-s − 0.408·12-s + 1.17·13-s + 0.516·15-s + 0.250·16-s + 0.685·17-s − 0.235·18-s − 0.858·19-s − 0.316·20-s − 0.426·22-s + 0.686·23-s − 0.288·24-s − 0.599·25-s + 0.832·26-s + 1.08·27-s − 1.65·29-s + 0.365·30-s + 1.09·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + 1.41T + 3T^{2} \)
5 \( 1 + 1.41T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 - 2.82T + 17T^{2} \)
19 \( 1 + 3.74T + 19T^{2} \)
23 \( 1 - 3.29T + 23T^{2} \)
29 \( 1 + 8.93T + 29T^{2} \)
31 \( 1 - 6.06T + 31T^{2} \)
37 \( 1 + 5.64T + 37T^{2} \)
41 \( 1 - 7.98T + 41T^{2} \)
43 \( 1 + 0.354T + 43T^{2} \)
47 \( 1 - 9.81T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 + 8.39T + 59T^{2} \)
61 \( 1 - 1.91T + 61T^{2} \)
67 \( 1 - 6T + 67T^{2} \)
71 \( 1 - 14.5T + 71T^{2} \)
73 \( 1 + 6.57T + 73T^{2} \)
83 \( 1 + 3.74T + 83T^{2} \)
89 \( 1 + 3.74T + 89T^{2} \)
97 \( 1 - 1.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47334142404718712357748113023, −6.58493682620652699288123995887, −5.97895470493932456177916031363, −5.50037815288032664175411664762, −4.75158115413131743754305433092, −3.94852760250242601714691283645, −3.33275634426814096249125445733, −2.40301732934167237663069288081, −1.18638467110435038784685531017, 0, 1.18638467110435038784685531017, 2.40301732934167237663069288081, 3.33275634426814096249125445733, 3.94852760250242601714691283645, 4.75158115413131743754305433092, 5.50037815288032664175411664762, 5.97895470493932456177916031363, 6.58493682620652699288123995887, 7.47334142404718712357748113023

Graph of the $Z$-function along the critical line