| L(s)  = 1 | + 2-s   − 1.41·3-s   + 4-s   − 1.41·5-s   − 1.41·6-s     + 8-s   − 0.999·9-s   − 1.41·10-s   − 2·11-s   − 1.41·12-s   + 4.24·13-s     + 2.00·15-s   + 16-s   + 2.82·17-s   − 0.999·18-s   − 3.74·19-s   − 1.41·20-s     − 2·22-s   + 3.29·23-s   − 1.41·24-s   − 2.99·25-s   + 4.24·26-s   + 5.65·27-s     − 8.93·29-s   + 2.00·30-s   + 6.06·31-s   + 32-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   − 0.816·3-s   + 0.5·4-s   − 0.632·5-s   − 0.577·6-s     + 0.353·8-s   − 0.333·9-s   − 0.447·10-s   − 0.603·11-s   − 0.408·12-s   + 1.17·13-s     + 0.516·15-s   + 0.250·16-s   + 0.685·17-s   − 0.235·18-s   − 0.858·19-s   − 0.316·20-s     − 0.426·22-s   + 0.686·23-s   − 0.288·24-s   − 0.599·25-s   + 0.832·26-s   + 1.08·27-s     − 1.65·29-s   + 0.365·30-s   + 1.09·31-s   + 0.176·32-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 - T \) | 
|  | 7 | \( 1 \) | 
|  | 79 | \( 1 - T \) | 
| good | 3 | \( 1 + 1.41T + 3T^{2} \) | 
|  | 5 | \( 1 + 1.41T + 5T^{2} \) | 
|  | 11 | \( 1 + 2T + 11T^{2} \) | 
|  | 13 | \( 1 - 4.24T + 13T^{2} \) | 
|  | 17 | \( 1 - 2.82T + 17T^{2} \) | 
|  | 19 | \( 1 + 3.74T + 19T^{2} \) | 
|  | 23 | \( 1 - 3.29T + 23T^{2} \) | 
|  | 29 | \( 1 + 8.93T + 29T^{2} \) | 
|  | 31 | \( 1 - 6.06T + 31T^{2} \) | 
|  | 37 | \( 1 + 5.64T + 37T^{2} \) | 
|  | 41 | \( 1 - 7.98T + 41T^{2} \) | 
|  | 43 | \( 1 + 0.354T + 43T^{2} \) | 
|  | 47 | \( 1 - 9.81T + 47T^{2} \) | 
|  | 53 | \( 1 + 12.9T + 53T^{2} \) | 
|  | 59 | \( 1 + 8.39T + 59T^{2} \) | 
|  | 61 | \( 1 - 1.91T + 61T^{2} \) | 
|  | 67 | \( 1 - 6T + 67T^{2} \) | 
|  | 71 | \( 1 - 14.5T + 71T^{2} \) | 
|  | 73 | \( 1 + 6.57T + 73T^{2} \) | 
|  | 83 | \( 1 + 3.74T + 83T^{2} \) | 
|  | 89 | \( 1 + 3.74T + 89T^{2} \) | 
|  | 97 | \( 1 - 1.41T + 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−7.47334142404718712357748113023, −6.58493682620652699288123995887, −5.97895470493932456177916031363, −5.50037815288032664175411664762, −4.75158115413131743754305433092, −3.94852760250242601714691283645, −3.33275634426814096249125445733, −2.40301732934167237663069288081, −1.18638467110435038784685531017, 0, 
1.18638467110435038784685531017, 2.40301732934167237663069288081, 3.33275634426814096249125445733, 3.94852760250242601714691283645, 4.75158115413131743754305433092, 5.50037815288032664175411664762, 5.97895470493932456177916031363, 6.58493682620652699288123995887, 7.47334142404718712357748113023
