Properties

Label 2-7742-1.1-c1-0-86
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.79·3-s + 4-s − 3.27·5-s + 1.79·6-s − 8-s + 0.208·9-s + 3.27·10-s + 3.66·11-s − 1.79·12-s − 3.61·13-s + 5.86·15-s + 16-s + 2.96·17-s − 0.208·18-s − 6.46·19-s − 3.27·20-s − 3.66·22-s − 3.49·23-s + 1.79·24-s + 5.72·25-s + 3.61·26-s + 5.00·27-s − 0.926·29-s − 5.86·30-s − 0.183·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.03·3-s + 0.5·4-s − 1.46·5-s + 0.731·6-s − 0.353·8-s + 0.0693·9-s + 1.03·10-s + 1.10·11-s − 0.517·12-s − 1.00·13-s + 1.51·15-s + 0.250·16-s + 0.720·17-s − 0.0490·18-s − 1.48·19-s − 0.732·20-s − 0.781·22-s − 0.727·23-s + 0.365·24-s + 1.14·25-s + 0.709·26-s + 0.962·27-s − 0.172·29-s − 1.07·30-s − 0.0328·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + 1.79T + 3T^{2} \)
5 \( 1 + 3.27T + 5T^{2} \)
11 \( 1 - 3.66T + 11T^{2} \)
13 \( 1 + 3.61T + 13T^{2} \)
17 \( 1 - 2.96T + 17T^{2} \)
19 \( 1 + 6.46T + 19T^{2} \)
23 \( 1 + 3.49T + 23T^{2} \)
29 \( 1 + 0.926T + 29T^{2} \)
31 \( 1 + 0.183T + 31T^{2} \)
37 \( 1 - 2.94T + 37T^{2} \)
41 \( 1 + 1.69T + 41T^{2} \)
43 \( 1 - 4.60T + 43T^{2} \)
47 \( 1 + 1.66T + 47T^{2} \)
53 \( 1 + 9.98T + 53T^{2} \)
59 \( 1 + 6.78T + 59T^{2} \)
61 \( 1 - 6.62T + 61T^{2} \)
67 \( 1 - 13.8T + 67T^{2} \)
71 \( 1 - 8.01T + 71T^{2} \)
73 \( 1 + 5.61T + 73T^{2} \)
83 \( 1 - 3.28T + 83T^{2} \)
89 \( 1 - 12.6T + 89T^{2} \)
97 \( 1 + 5.35T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64015866748904608222548586838, −6.76056016207730060964291991946, −6.38979994110086092832190632662, −5.51605926131131645640261804197, −4.60992316097354487009298403834, −4.03176570297778026119029309116, −3.17602266061067149348296997912, −2.03231015204319745801612064952, −0.78477738506659022325976445336, 0, 0.78477738506659022325976445336, 2.03231015204319745801612064952, 3.17602266061067149348296997912, 4.03176570297778026119029309116, 4.60992316097354487009298403834, 5.51605926131131645640261804197, 6.38979994110086092832190632662, 6.76056016207730060964291991946, 7.64015866748904608222548586838

Graph of the $Z$-function along the critical line