Properties

Label 2-7742-1.1-c1-0-149
Degree $2$
Conductor $7742$
Sign $-1$
Analytic cond. $61.8201$
Root an. cond. $7.86258$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 1.33·3-s + 4-s − 3.04·5-s − 1.33·6-s − 8-s − 1.21·9-s + 3.04·10-s − 1.14·11-s + 1.33·12-s + 2.19·13-s − 4.07·15-s + 16-s + 2.75·17-s + 1.21·18-s − 5.40·19-s − 3.04·20-s + 1.14·22-s + 2.31·23-s − 1.33·24-s + 4.27·25-s − 2.19·26-s − 5.63·27-s + 3.73·29-s + 4.07·30-s − 3.26·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.771·3-s + 0.5·4-s − 1.36·5-s − 0.545·6-s − 0.353·8-s − 0.404·9-s + 0.962·10-s − 0.345·11-s + 0.385·12-s + 0.608·13-s − 1.05·15-s + 0.250·16-s + 0.668·17-s + 0.285·18-s − 1.23·19-s − 0.680·20-s + 0.244·22-s + 0.483·23-s − 0.272·24-s + 0.854·25-s − 0.430·26-s − 1.08·27-s + 0.693·29-s + 0.743·30-s − 0.587·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7742 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7742\)    =    \(2 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(61.8201\)
Root analytic conductor: \(7.86258\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7742,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 - 1.33T + 3T^{2} \)
5 \( 1 + 3.04T + 5T^{2} \)
11 \( 1 + 1.14T + 11T^{2} \)
13 \( 1 - 2.19T + 13T^{2} \)
17 \( 1 - 2.75T + 17T^{2} \)
19 \( 1 + 5.40T + 19T^{2} \)
23 \( 1 - 2.31T + 23T^{2} \)
29 \( 1 - 3.73T + 29T^{2} \)
31 \( 1 + 3.26T + 31T^{2} \)
37 \( 1 - 5.59T + 37T^{2} \)
41 \( 1 - 8.37T + 41T^{2} \)
43 \( 1 - 4.42T + 43T^{2} \)
47 \( 1 - 8.76T + 47T^{2} \)
53 \( 1 + 1.28T + 53T^{2} \)
59 \( 1 - 2.24T + 59T^{2} \)
61 \( 1 + 0.292T + 61T^{2} \)
67 \( 1 - 0.230T + 67T^{2} \)
71 \( 1 + 13.7T + 71T^{2} \)
73 \( 1 + 1.92T + 73T^{2} \)
83 \( 1 - 7.41T + 83T^{2} \)
89 \( 1 + 14.9T + 89T^{2} \)
97 \( 1 + 9.87T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70727645523106626724829018600, −7.22318717768918829060239100607, −6.24259850332030130373066903468, −5.57066086887451840098670445348, −4.36274683668338577802854180229, −3.84217357284611533395417597400, −2.98717827334555263038225477050, −2.40023630808505815814532311822, −1.08924725019230489289766047421, 0, 1.08924725019230489289766047421, 2.40023630808505815814532311822, 2.98717827334555263038225477050, 3.84217357284611533395417597400, 4.36274683668338577802854180229, 5.57066086887451840098670445348, 6.24259850332030130373066903468, 7.22318717768918829060239100607, 7.70727645523106626724829018600

Graph of the $Z$-function along the critical line