Properties

Label 2-768-12.11-c3-0-39
Degree $2$
Conductor $768$
Sign $-0.577 - 0.816i$
Analytic cond. $45.3134$
Root an. cond. $6.73152$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3 + 4.24i)3-s + 5.65i·5-s + 16.9i·7-s + (−8.99 + 25.4i)9-s + 30·11-s + 72·13-s + (−24 + 16.9i)15-s + 50.9i·17-s + 25.4i·19-s + (−71.9 + 50.9i)21-s + 144·23-s + 93·25-s + (−134. + 38.1i)27-s − 5.65i·29-s − 220. i·31-s + ⋯
L(s)  = 1  + (0.577 + 0.816i)3-s + 0.505i·5-s + 0.916i·7-s + (−0.333 + 0.942i)9-s + 0.822·11-s + 1.53·13-s + (−0.413 + 0.292i)15-s + 0.726i·17-s + 0.307i·19-s + (−0.748 + 0.529i)21-s + 1.30·23-s + 0.743·25-s + (−0.962 + 0.272i)27-s − 0.0362i·29-s − 1.27i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(768\)    =    \(2^{8} \cdot 3\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(45.3134\)
Root analytic conductor: \(6.73152\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{768} (767, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 768,\ (\ :3/2),\ -0.577 - 0.816i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.859761105\)
\(L(\frac12)\) \(\approx\) \(2.859761105\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-3 - 4.24i)T \)
good5 \( 1 - 5.65iT - 125T^{2} \)
7 \( 1 - 16.9iT - 343T^{2} \)
11 \( 1 - 30T + 1.33e3T^{2} \)
13 \( 1 - 72T + 2.19e3T^{2} \)
17 \( 1 - 50.9iT - 4.91e3T^{2} \)
19 \( 1 - 25.4iT - 6.85e3T^{2} \)
23 \( 1 - 144T + 1.21e4T^{2} \)
29 \( 1 + 5.65iT - 2.43e4T^{2} \)
31 \( 1 + 220. iT - 2.97e4T^{2} \)
37 \( 1 - 72T + 5.06e4T^{2} \)
41 \( 1 - 305. iT - 6.89e4T^{2} \)
43 \( 1 - 229. iT - 7.95e4T^{2} \)
47 \( 1 + 576T + 1.03e5T^{2} \)
53 \( 1 + 514. iT - 1.48e5T^{2} \)
59 \( 1 + 414T + 2.05e5T^{2} \)
61 \( 1 + 504T + 2.26e5T^{2} \)
67 \( 1 - 789. iT - 3.00e5T^{2} \)
71 \( 1 - 720T + 3.57e5T^{2} \)
73 \( 1 - 178T + 3.89e5T^{2} \)
79 \( 1 + 967. iT - 4.93e5T^{2} \)
83 \( 1 + 438T + 5.71e5T^{2} \)
89 \( 1 + 865. iT - 7.04e5T^{2} \)
97 \( 1 - 650T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13899214341900857955868272112, −9.269344872992837976155001630935, −8.666636444021353293013619027303, −7.950495980934709103522300265100, −6.55109439563130940834450658891, −5.87483246301908850082338604726, −4.68146771312191446444942494439, −3.63609502191510950065329334440, −2.88414852632983942198080465081, −1.53821500099580977705815329629, 0.811579040061299962554660406386, 1.41622080603324159481921928945, 3.06772048897158497848579256964, 3.91034923086502229398601516015, 5.09953951291311930579745150150, 6.46675890895733500390434668570, 6.95045361326107877536244052875, 7.922814700948561537578784069393, 8.926741821150822672903021602055, 9.168106010111511902872344041268

Graph of the $Z$-function along the critical line