L(s) = 1 | + (1.61 − 0.618i)3-s − 3.23·5-s + 1.23i·7-s + (2.23 − 2.00i)9-s + 5.23i·11-s + 4.47i·13-s + (−5.23 + 2.00i)15-s + 2.47i·17-s − 0.763·19-s + (0.763 + 2.00i)21-s + 2.47·23-s + 5.47·25-s + (2.38 − 4.61i)27-s + 4.76·29-s − 5.23i·31-s + ⋯ |
L(s) = 1 | + (0.934 − 0.356i)3-s − 1.44·5-s + 0.467i·7-s + (0.745 − 0.666i)9-s + 1.57i·11-s + 1.24i·13-s + (−1.35 + 0.516i)15-s + 0.599i·17-s − 0.175·19-s + (0.166 + 0.436i)21-s + 0.515·23-s + 1.09·25-s + (0.458 − 0.888i)27-s + 0.884·29-s − 0.940i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.408 - 0.912i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.21628 + 0.788431i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21628 + 0.788431i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.61 + 0.618i)T \) |
good | 5 | \( 1 + 3.23T + 5T^{2} \) |
| 7 | \( 1 - 1.23iT - 7T^{2} \) |
| 11 | \( 1 - 5.23iT - 11T^{2} \) |
| 13 | \( 1 - 4.47iT - 13T^{2} \) |
| 17 | \( 1 - 2.47iT - 17T^{2} \) |
| 19 | \( 1 + 0.763T + 19T^{2} \) |
| 23 | \( 1 - 2.47T + 23T^{2} \) |
| 29 | \( 1 - 4.76T + 29T^{2} \) |
| 31 | \( 1 + 5.23iT - 31T^{2} \) |
| 37 | \( 1 - 8.47iT - 37T^{2} \) |
| 41 | \( 1 - 6.47iT - 41T^{2} \) |
| 43 | \( 1 + 7.23T + 43T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + 3.23T + 53T^{2} \) |
| 59 | \( 1 + 1.23iT - 59T^{2} \) |
| 61 | \( 1 + 0.472iT - 61T^{2} \) |
| 67 | \( 1 + 9.70T + 67T^{2} \) |
| 71 | \( 1 + 15.4T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + 0.291iT - 79T^{2} \) |
| 83 | \( 1 + 2.76iT - 83T^{2} \) |
| 89 | \( 1 - 4iT - 89T^{2} \) |
| 97 | \( 1 - 0.472T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33973310926460203591737336354, −9.441412411908879263546940618261, −8.660981821348514052025866626256, −7.912072997692439720354712666426, −7.18335137708237561618742043769, −6.47855245082020739774002256760, −4.59561363840731481462181176044, −4.14079054318181423031266963422, −2.89963240507423642662031712386, −1.68962093547285754843264970708,
0.68764621073412762469194215300, 2.94824253369975586331559108812, 3.49480344869575337104572687181, 4.42968988332501770349683343135, 5.55933353659882848251995154607, 7.08066195669088376767250866621, 7.71669447707366730454022728302, 8.480646796025044166880262971114, 8.975826963321134218466053052582, 10.44247750521108545596264655754