L(s) = 1 | + (1.37 − 2.38i)3-s + (−0.5 + 0.866i)5-s + 4.11·7-s + (−2.30 − 3.98i)9-s − 6.09·11-s + (−1.17 − 2.02i)13-s + (1.37 + 2.38i)15-s + (3.80 − 6.58i)17-s + (1.46 − 4.10i)19-s + (5.67 − 9.82i)21-s + (2.98 + 5.17i)23-s + (−0.499 − 0.866i)25-s − 4.43·27-s + (−0.969 − 1.67i)29-s − 1.43·31-s + ⋯ |
L(s) = 1 | + (0.796 − 1.37i)3-s + (−0.223 + 0.387i)5-s + 1.55·7-s + (−0.767 − 1.32i)9-s − 1.83·11-s + (−0.324 − 0.562i)13-s + (0.356 + 0.616i)15-s + (0.922 − 1.59i)17-s + (0.335 − 0.942i)19-s + (1.23 − 2.14i)21-s + (0.623 + 1.07i)23-s + (−0.0999 − 0.173i)25-s − 0.852·27-s + (−0.180 − 0.311i)29-s − 0.257·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.128 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.128 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.32562 - 1.50880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.32562 - 1.50880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (-1.46 + 4.10i)T \) |
good | 3 | \( 1 + (-1.37 + 2.38i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 4.11T + 7T^{2} \) |
| 11 | \( 1 + 6.09T + 11T^{2} \) |
| 13 | \( 1 + (1.17 + 2.02i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.80 + 6.58i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-2.98 - 5.17i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.969 + 1.67i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.43T + 31T^{2} \) |
| 37 | \( 1 - 8.91T + 37T^{2} \) |
| 41 | \( 1 + (1.70 - 2.94i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.655 + 1.13i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.192 + 0.333i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.597 + 1.03i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.48 - 9.50i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.0825 + 0.142i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.848 - 1.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (4.75 - 8.23i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.97 - 10.3i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-3.87 + 6.71i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.25T + 83T^{2} \) |
| 89 | \( 1 + (-9.26 - 16.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.203 + 0.352i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11102683205044496650409903198, −8.993141649118330382264987505815, −7.87214705095831362123478134021, −7.70820778875259348097385516266, −7.16302954998673308403312189918, −5.54322967018816639018518993393, −4.88179904783776517788191634722, −2.96585443405253634704878720392, −2.45274691473987810945664736513, −0.989747457857108387346557723790,
1.90062819870407155793676971019, 3.17824804643201823759064044138, 4.33129298366950069027021702796, 4.88881905298704823915797097157, 5.71787495341889889840442509833, 7.73051406978567686852542021363, 8.065529935753427234422589886699, 8.746629005761910544686760161350, 9.792323231873759782346267197922, 10.59363888396758172365149418650