L(s) = 1 | + (0.548 − 0.950i)3-s + (−0.5 + 0.866i)5-s − 0.416·7-s + (0.897 + 1.55i)9-s + 2.17·11-s + (2.13 + 3.70i)13-s + (0.548 + 0.950i)15-s + (0.602 − 1.04i)17-s + (−4.32 + 0.572i)19-s + (−0.228 + 0.395i)21-s + (0.224 + 0.389i)23-s + (−0.499 − 0.866i)25-s + 5.26·27-s + (2.94 + 5.09i)29-s + 8.26·31-s + ⋯ |
L(s) = 1 | + (0.316 − 0.548i)3-s + (−0.223 + 0.387i)5-s − 0.157·7-s + (0.299 + 0.518i)9-s + 0.655·11-s + (0.592 + 1.02i)13-s + (0.141 + 0.245i)15-s + (0.146 − 0.252i)17-s + (−0.991 + 0.131i)19-s + (−0.0498 + 0.0863i)21-s + (0.0468 + 0.0811i)23-s + (−0.0999 − 0.173i)25-s + 1.01·27-s + (0.546 + 0.946i)29-s + 1.48·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.337i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.941 - 0.337i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.68900 + 0.293936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.68900 + 0.293936i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (4.32 - 0.572i)T \) |
good | 3 | \( 1 + (-0.548 + 0.950i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 0.416T + 7T^{2} \) |
| 11 | \( 1 - 2.17T + 11T^{2} \) |
| 13 | \( 1 + (-2.13 - 3.70i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.602 + 1.04i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.224 - 0.389i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.94 - 5.09i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.26T + 31T^{2} \) |
| 37 | \( 1 - 6.80T + 37T^{2} \) |
| 41 | \( 1 + (2.30 - 3.99i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.80 + 4.85i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.07 - 1.85i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.00 + 8.67i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.74 + 3.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.86 - 8.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.89 + 6.74i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.09 + 10.5i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.534 + 0.924i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.04 - 12.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 9.73T + 83T^{2} \) |
| 89 | \( 1 + (4.19 + 7.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.91 - 6.78i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43059321420032216289836789248, −9.477891183116731645634245480618, −8.543205268973394262020350936092, −7.85312819141019432992125689926, −6.72235940253024038463566588570, −6.42761066835830494015182774157, −4.83090274794799988161283050893, −3.90108656151089728725805652452, −2.63509180059583115298022630848, −1.44373222818674297066029506109,
0.989251596735325955379014634779, 2.82914592383782865748777191270, 3.91859668231606565691893828015, 4.57582986030935619475670363591, 5.95283898725918077838233632703, 6.65218787921129003602869079975, 8.003389512024305489493311075916, 8.568918574639169565896423506487, 9.493001615587211546332865597903, 10.14415798720454728015880003551