L(s) = 1 | + (−0.832 − 1.44i)3-s + (−0.5 − 0.866i)5-s + 1.93·7-s + (0.114 − 0.198i)9-s + 1.38·11-s + (0.362 − 0.627i)13-s + (−0.832 + 1.44i)15-s + (1.38 + 2.39i)17-s + (0.607 − 4.31i)19-s + (−1.60 − 2.78i)21-s + (4.34 − 7.52i)23-s + (−0.499 + 0.866i)25-s − 5.37·27-s + (−2.76 + 4.79i)29-s − 2.37·31-s + ⋯ |
L(s) = 1 | + (−0.480 − 0.832i)3-s + (−0.223 − 0.387i)5-s + 0.729·7-s + (0.0382 − 0.0661i)9-s + 0.418·11-s + (0.100 − 0.174i)13-s + (−0.214 + 0.372i)15-s + (0.335 + 0.581i)17-s + (0.139 − 0.990i)19-s + (−0.350 − 0.607i)21-s + (0.905 − 1.56i)23-s + (−0.0999 + 0.173i)25-s − 1.03·27-s + (−0.513 + 0.890i)29-s − 0.426·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.345 + 0.938i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.737938 - 1.05801i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.737938 - 1.05801i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.607 + 4.31i)T \) |
good | 3 | \( 1 + (0.832 + 1.44i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 1.93T + 7T^{2} \) |
| 11 | \( 1 - 1.38T + 11T^{2} \) |
| 13 | \( 1 + (-0.362 + 0.627i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.38 - 2.39i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-4.34 + 7.52i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.76 - 4.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.37T + 31T^{2} \) |
| 37 | \( 1 + 6.58T + 37T^{2} \) |
| 41 | \( 1 + (-1.62 - 2.82i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4.67 + 8.10i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.78 + 10.0i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.64 + 6.31i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.56 - 2.70i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.44 - 2.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.435 + 0.753i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.16 - 2.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.02 + 3.50i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.16 - 7.21i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 9.97T + 83T^{2} \) |
| 89 | \( 1 + (2.41 - 4.17i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.77 - 6.53i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22789466451498202597432562618, −8.931407926588416368077076562319, −8.452215844702225522410216112316, −7.24756638951690800750170347932, −6.78020752548045789912756375206, −5.61398795629522000637125072687, −4.76998730190785858400660269330, −3.57779237357833421933888189701, −1.92152161919928797601117453211, −0.75379024652668632679098345037,
1.63606301629739767067938242280, 3.32680509967531593206291900077, 4.26490867757936288665456250046, 5.17885461428416380772579849218, 5.96382433129294015784403372263, 7.30119254425693140532929474147, 7.86677983349995246989216002504, 9.127008608447449694308610977153, 9.812556933839912378058765783891, 10.66719942447569694291967828372