L(s) = 1 | + (0.5 + 0.866i)3-s + (−0.5 − 0.866i)5-s − 2·7-s + (1 − 1.73i)9-s + 5·11-s + (−3 + 5.19i)13-s + (0.499 − 0.866i)15-s + (3 + 5.19i)17-s + (3.5 − 2.59i)19-s + (−1 − 1.73i)21-s + (2 − 3.46i)23-s + (−0.499 + 0.866i)25-s + 5·27-s + (3 − 5.19i)29-s + 4·31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.223 − 0.387i)5-s − 0.755·7-s + (0.333 − 0.577i)9-s + 1.50·11-s + (−0.832 + 1.44i)13-s + (0.129 − 0.223i)15-s + (0.727 + 1.26i)17-s + (0.802 − 0.596i)19-s + (−0.218 − 0.377i)21-s + (0.417 − 0.722i)23-s + (−0.0999 + 0.173i)25-s + 0.962·27-s + (0.557 − 0.964i)29-s + 0.718·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.63662 + 0.353718i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.63662 + 0.353718i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 19 | \( 1 + (-3.5 + 2.59i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 - 5T + 11T^{2} \) |
| 13 | \( 1 + (3 - 5.19i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 + (-5.5 - 9.52i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.5 + 4.33i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5 - 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.5 + 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (5 + 8.66i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (3.5 + 6.06i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 3T + 83T^{2} \) |
| 89 | \( 1 + (3 - 5.19i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4.5 + 7.79i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.03528996387769838848724582964, −9.453726057873517338723319940303, −9.050567273203785145574387973634, −7.899415781529398187808716609352, −6.65872552951647901265848798970, −6.29462411664765246763965647886, −4.57666272386209862509798759131, −4.08678819460603297512671945345, −2.99080406517359437205197455634, −1.23761206828327052267240077639,
1.07976426416212227132010067644, 2.75606273452331965250754120076, 3.48794920523652399613094655618, 4.91308000155256845909209041227, 5.92841901195640643908372510732, 7.18944077258408464064528057980, 7.34984261628592903619931828026, 8.484165536161377356117678801729, 9.633422391729570274715476782586, 10.03776481763495267659364773210