L(s) = 1 | + (−1.29 − 0.577i)2-s + 1.40i·3-s + (1.33 + 1.49i)4-s − i·5-s + (0.814 − 1.81i)6-s − 1.07·7-s + (−0.856 − 2.69i)8-s + 1.01·9-s + (−0.577 + 1.29i)10-s + 2.73i·11-s + (−2.10 + 1.87i)12-s + 2.56i·13-s + (1.39 + 0.622i)14-s + 1.40·15-s + (−0.451 + 3.97i)16-s − 7.57·17-s + ⋯ |
L(s) = 1 | + (−0.912 − 0.408i)2-s + 0.813i·3-s + (0.665 + 0.745i)4-s − 0.447i·5-s + (0.332 − 0.742i)6-s − 0.407·7-s + (−0.302 − 0.953i)8-s + 0.337·9-s + (−0.182 + 0.408i)10-s + 0.824i·11-s + (−0.607 + 0.542i)12-s + 0.710i·13-s + (0.371 + 0.166i)14-s + 0.364·15-s + (−0.112 + 0.993i)16-s − 1.83·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.302 - 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.302 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.414507 + 0.566721i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.414507 + 0.566721i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.29 + 0.577i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 1.40iT - 3T^{2} \) |
| 7 | \( 1 + 1.07T + 7T^{2} \) |
| 11 | \( 1 - 2.73iT - 11T^{2} \) |
| 13 | \( 1 - 2.56iT - 13T^{2} \) |
| 17 | \( 1 + 7.57T + 17T^{2} \) |
| 23 | \( 1 - 5.41T + 23T^{2} \) |
| 29 | \( 1 - 3.77iT - 29T^{2} \) |
| 31 | \( 1 - 7.99T + 31T^{2} \) |
| 37 | \( 1 - 5.91iT - 37T^{2} \) |
| 41 | \( 1 + 8.09T + 41T^{2} \) |
| 43 | \( 1 - 2.43iT - 43T^{2} \) |
| 47 | \( 1 + 8.22T + 47T^{2} \) |
| 53 | \( 1 + 11.9iT - 53T^{2} \) |
| 59 | \( 1 - 11.8iT - 59T^{2} \) |
| 61 | \( 1 - 12.3iT - 61T^{2} \) |
| 67 | \( 1 - 15.2iT - 67T^{2} \) |
| 71 | \( 1 + 5.99T + 71T^{2} \) |
| 73 | \( 1 + 7.94T + 73T^{2} \) |
| 79 | \( 1 - 9.39T + 79T^{2} \) |
| 83 | \( 1 - 6.14iT - 83T^{2} \) |
| 89 | \( 1 - 13.0T + 89T^{2} \) |
| 97 | \( 1 + 16.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30497682366907795577249150202, −9.783073390739182388449923556155, −9.017374219568770636305907586136, −8.464670995477826905636614479322, −7.01601546707299374203052807423, −6.66247601369384901205505912067, −4.82845771779694297882760863963, −4.22683698041339427756126461329, −2.92074849493153440084112045892, −1.57677597976768952960575254293,
0.47939998797476906639493359595, 1.98725759977634000421845033495, 3.13283256014129503930133859343, 4.86543308696078842472956634940, 6.35402407009866414435846099645, 6.47399777790544888197401310256, 7.53361890034937686248603001834, 8.249945505070291209097928952037, 9.109538725858007621323510039207, 10.03409598590256988325451691304