L(s) = 1 | + (1.30 − 0.540i)2-s + 3.43i·3-s + (1.41 − 1.41i)4-s − i·5-s + (1.85 + 4.49i)6-s + 3.17·7-s + (1.08 − 2.61i)8-s − 8.80·9-s + (−0.540 − 1.30i)10-s + 3.55i·11-s + (4.85 + 4.86i)12-s + 3.89i·13-s + (4.14 − 1.71i)14-s + 3.43·15-s + (0.00555 − 3.99i)16-s + 2.19·17-s + ⋯ |
L(s) = 1 | + (0.924 − 0.382i)2-s + 1.98i·3-s + (0.707 − 0.706i)4-s − 0.447i·5-s + (0.758 + 1.83i)6-s + 1.19·7-s + (0.383 − 0.923i)8-s − 2.93·9-s + (−0.170 − 0.413i)10-s + 1.07i·11-s + (1.40 + 1.40i)12-s + 1.08i·13-s + (1.10 − 0.458i)14-s + 0.887·15-s + (0.00138 − 0.999i)16-s + 0.532·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.383 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.37282 + 1.58368i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.37282 + 1.58368i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.30 + 0.540i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 3.43iT - 3T^{2} \) |
| 7 | \( 1 - 3.17T + 7T^{2} \) |
| 11 | \( 1 - 3.55iT - 11T^{2} \) |
| 13 | \( 1 - 3.89iT - 13T^{2} \) |
| 17 | \( 1 - 2.19T + 17T^{2} \) |
| 23 | \( 1 - 5.09T + 23T^{2} \) |
| 29 | \( 1 - 4.27iT - 29T^{2} \) |
| 31 | \( 1 + 2.70T + 31T^{2} \) |
| 37 | \( 1 + 0.572iT - 37T^{2} \) |
| 41 | \( 1 + 2.34T + 41T^{2} \) |
| 43 | \( 1 + 0.256iT - 43T^{2} \) |
| 47 | \( 1 + 7.32T + 47T^{2} \) |
| 53 | \( 1 + 7.59iT - 53T^{2} \) |
| 59 | \( 1 + 9.58iT - 59T^{2} \) |
| 61 | \( 1 + 11.0iT - 61T^{2} \) |
| 67 | \( 1 - 11.6iT - 67T^{2} \) |
| 71 | \( 1 - 4.55T + 71T^{2} \) |
| 73 | \( 1 - 4.26T + 73T^{2} \) |
| 79 | \( 1 - 16.6T + 79T^{2} \) |
| 83 | \( 1 + 12.9iT - 83T^{2} \) |
| 89 | \( 1 + 17.2T + 89T^{2} \) |
| 97 | \( 1 - 11.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64216615273410020522669509140, −9.730947118659885987974939387289, −9.201096177205684173361963464233, −8.141964119581326958366887270670, −6.75264606414466507496243055809, −5.29092858838698489455294510947, −4.94766328944014676127774143739, −4.30575902021460724060809956996, −3.36397080053320765639190376014, −1.93249127535256640889307205024,
1.22406956312162043986550214901, 2.50665781935737595234223541906, 3.34887408256214427830909316346, 5.21307292249080843141819469692, 5.81725272173394570772506504503, 6.63894001858921040100689260649, 7.61587582628380255463825955259, 7.961145730531388198207536943260, 8.683178281881104563019853181665, 10.82792070770879979283471154079