L(s) = 1 | + (1.02 + 0.970i)2-s + 2.59i·3-s + (0.116 + 1.99i)4-s − i·5-s + (−2.52 + 2.67i)6-s − 4.55·7-s + (−1.81 + 2.16i)8-s − 3.74·9-s + (0.970 − 1.02i)10-s − 4.44i·11-s + (−5.18 + 0.302i)12-s + 4.58i·13-s + (−4.68 − 4.41i)14-s + 2.59·15-s + (−3.97 + 0.465i)16-s + 0.771·17-s + ⋯ |
L(s) = 1 | + (0.727 + 0.686i)2-s + 1.49i·3-s + (0.0583 + 0.998i)4-s − 0.447i·5-s + (−1.02 + 1.09i)6-s − 1.72·7-s + (−0.642 + 0.766i)8-s − 1.24·9-s + (0.306 − 0.325i)10-s − 1.34i·11-s + (−1.49 + 0.0874i)12-s + 1.27i·13-s + (−1.25 − 1.18i)14-s + 0.670·15-s + (−0.993 + 0.116i)16-s + 0.187·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.484417 - 1.03848i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.484417 - 1.03848i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.02 - 0.970i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 2.59iT - 3T^{2} \) |
| 7 | \( 1 + 4.55T + 7T^{2} \) |
| 11 | \( 1 + 4.44iT - 11T^{2} \) |
| 13 | \( 1 - 4.58iT - 13T^{2} \) |
| 17 | \( 1 - 0.771T + 17T^{2} \) |
| 23 | \( 1 - 1.32T + 23T^{2} \) |
| 29 | \( 1 - 9.02iT - 29T^{2} \) |
| 31 | \( 1 + 8.26T + 31T^{2} \) |
| 37 | \( 1 - 3.29iT - 37T^{2} \) |
| 41 | \( 1 - 7.00T + 41T^{2} \) |
| 43 | \( 1 - 11.3iT - 43T^{2} \) |
| 47 | \( 1 + 1.75T + 47T^{2} \) |
| 53 | \( 1 + 6.73iT - 53T^{2} \) |
| 59 | \( 1 + 10.5iT - 59T^{2} \) |
| 61 | \( 1 - 11.0iT - 61T^{2} \) |
| 67 | \( 1 - 10.0iT - 67T^{2} \) |
| 71 | \( 1 - 4.39T + 71T^{2} \) |
| 73 | \( 1 + 4.07T + 73T^{2} \) |
| 79 | \( 1 + 11.4T + 79T^{2} \) |
| 83 | \( 1 + 10.9iT - 83T^{2} \) |
| 89 | \( 1 - 2.17T + 89T^{2} \) |
| 97 | \( 1 - 5.66T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.93870205292114358071867005663, −9.793219767615003742505826202865, −9.082909582156243805042537544695, −8.687859521874912428249704587292, −7.15440648844709510859121675119, −6.25557139331879055555732641320, −5.50461203893265627139200722756, −4.52087364665550023238749498073, −3.59976515142978990531817505469, −3.08126155070653554936470840471,
0.43044667421565693895826996872, 2.07459124505121041282171662970, 2.89066622468808868741454116225, 3.92568127369055676573951422280, 5.59210267249247857134612603734, 6.21732356625236330840934432183, 7.06682064308496196274277575023, 7.62691287669572361158061031843, 9.218741133807744321221063651014, 9.974945329967048126535135132862