L(s) = 1 | + (0.943 + 1.05i)2-s − 2.94i·3-s + (−0.219 + 1.98i)4-s − i·5-s + (3.10 − 2.77i)6-s − 3.06·7-s + (−2.30 + 1.64i)8-s − 5.66·9-s + (1.05 − 0.943i)10-s + 1.87i·11-s + (5.85 + 0.647i)12-s − 5.87i·13-s + (−2.89 − 3.23i)14-s − 2.94·15-s + (−3.90 − 0.874i)16-s − 5.65·17-s + ⋯ |
L(s) = 1 | + (0.667 + 0.744i)2-s − 1.69i·3-s + (−0.109 + 0.993i)4-s − 0.447i·5-s + (1.26 − 1.13i)6-s − 1.15·7-s + (−0.813 + 0.581i)8-s − 1.88·9-s + (0.333 − 0.298i)10-s + 0.565i·11-s + (1.68 + 0.186i)12-s − 1.62i·13-s + (−0.773 − 0.863i)14-s − 0.760·15-s + (−0.975 − 0.218i)16-s − 1.37·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 + 0.581i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.813 + 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.266416 - 0.831543i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.266416 - 0.831543i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.943 - 1.05i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 2.94iT - 3T^{2} \) |
| 7 | \( 1 + 3.06T + 7T^{2} \) |
| 11 | \( 1 - 1.87iT - 11T^{2} \) |
| 13 | \( 1 + 5.87iT - 13T^{2} \) |
| 17 | \( 1 + 5.65T + 17T^{2} \) |
| 23 | \( 1 + 1.68T + 23T^{2} \) |
| 29 | \( 1 - 0.0474iT - 29T^{2} \) |
| 31 | \( 1 - 6.54T + 31T^{2} \) |
| 37 | \( 1 + 7.10iT - 37T^{2} \) |
| 41 | \( 1 + 3.78T + 41T^{2} \) |
| 43 | \( 1 - 10.0iT - 43T^{2} \) |
| 47 | \( 1 + 0.994T + 47T^{2} \) |
| 53 | \( 1 + 9.56iT - 53T^{2} \) |
| 59 | \( 1 - 6.49iT - 59T^{2} \) |
| 61 | \( 1 + 4.53iT - 61T^{2} \) |
| 67 | \( 1 + 7.53iT - 67T^{2} \) |
| 71 | \( 1 - 13.8T + 71T^{2} \) |
| 73 | \( 1 + 9.77T + 73T^{2} \) |
| 79 | \( 1 + 4.30T + 79T^{2} \) |
| 83 | \( 1 + 1.69iT - 83T^{2} \) |
| 89 | \( 1 - 14.0T + 89T^{2} \) |
| 97 | \( 1 - 19.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.799505672606488275856558106356, −8.690898605896608628947417761877, −8.006299054416342862800246270639, −7.22959404724489628846246411240, −6.46550664872691264218257106460, −5.92014920622246669533260180262, −4.77116472397237875054929156528, −3.27912316873237443122840194049, −2.30799946774774125332641647956, −0.32754011755540863886630435335,
2.43834107051336527103029653240, 3.45434308927518249824319605762, 4.11293478601103593802681041317, 4.91631991795014403742372562106, 6.16435272454536683680490405697, 6.66678010705679902984250007872, 8.763221364626542169346843597002, 9.254083604028907488334694629920, 10.07140075257083324629271254318, 10.52748383435861255488127803762