L(s) = 1 | + (0.899 − 1.09i)2-s − 1.00i·3-s + (−0.381 − 1.96i)4-s − i·5-s + (−1.09 − 0.904i)6-s − 4.51·7-s + (−2.48 − 1.35i)8-s + 1.98·9-s + (−1.09 − 0.899i)10-s − 2.44i·11-s + (−1.97 + 0.383i)12-s + 1.51i·13-s + (−4.06 + 4.92i)14-s − 1.00·15-s + (−3.70 + 1.49i)16-s + 1.39·17-s + ⋯ |
L(s) = 1 | + (0.636 − 0.771i)2-s − 0.580i·3-s + (−0.190 − 0.981i)4-s − 0.447i·5-s + (−0.448 − 0.369i)6-s − 1.70·7-s + (−0.878 − 0.477i)8-s + 0.662·9-s + (−0.345 − 0.284i)10-s − 0.738i·11-s + (−0.570 + 0.110i)12-s + 0.419i·13-s + (−1.08 + 1.31i)14-s − 0.259·15-s + (−0.927 + 0.374i)16-s + 0.338·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.878 - 0.477i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.878 - 0.477i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.305988 + 1.20418i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.305988 + 1.20418i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.899 + 1.09i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 1.00iT - 3T^{2} \) |
| 7 | \( 1 + 4.51T + 7T^{2} \) |
| 11 | \( 1 + 2.44iT - 11T^{2} \) |
| 13 | \( 1 - 1.51iT - 13T^{2} \) |
| 17 | \( 1 - 1.39T + 17T^{2} \) |
| 23 | \( 1 + 7.19T + 23T^{2} \) |
| 29 | \( 1 - 3.84iT - 29T^{2} \) |
| 31 | \( 1 - 3.46T + 31T^{2} \) |
| 37 | \( 1 - 0.407iT - 37T^{2} \) |
| 41 | \( 1 + 7.23T + 41T^{2} \) |
| 43 | \( 1 + 5.25iT - 43T^{2} \) |
| 47 | \( 1 - 5.36T + 47T^{2} \) |
| 53 | \( 1 + 12.8iT - 53T^{2} \) |
| 59 | \( 1 + 4.37iT - 59T^{2} \) |
| 61 | \( 1 + 9.25iT - 61T^{2} \) |
| 67 | \( 1 + 0.564iT - 67T^{2} \) |
| 71 | \( 1 + 3.85T + 71T^{2} \) |
| 73 | \( 1 - 7.95T + 73T^{2} \) |
| 79 | \( 1 - 12.8T + 79T^{2} \) |
| 83 | \( 1 + 7.43iT - 83T^{2} \) |
| 89 | \( 1 - 6.13T + 89T^{2} \) |
| 97 | \( 1 + 9.57T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.894802547652530555009725535898, −9.325569865927854538086453405285, −8.232684320011402807267187954351, −6.81580669126157266135646988211, −6.34457300018715770266855132548, −5.33762611852788128936228869427, −4.03537366751144013605067914473, −3.27473446568753737064037481817, −1.96400685183300680313091319673, −0.49369659697528285947344070171,
2.66975661764247067249927993284, 3.68025919362280851541715527605, 4.34859103592156185923712370316, 5.66176508429257023654306289370, 6.41182447359952863732606454583, 7.16416658319155268101517519844, 8.007366031576683467505772334569, 9.326744671882292578650336771665, 9.883182886347134907075961273927, 10.52958627394641774445073089470