L(s) = 1 | + (−0.0481 + 1.41i)2-s + 1.80i·3-s + (−1.99 − 0.136i)4-s − i·5-s + (−2.55 − 0.0868i)6-s + 4.63·7-s + (0.288 − 2.81i)8-s − 0.260·9-s + (1.41 + 0.0481i)10-s − 5.12i·11-s + (0.245 − 3.60i)12-s + 0.771i·13-s + (−0.223 + 6.55i)14-s + 1.80·15-s + (3.96 + 0.542i)16-s + 7.88·17-s + ⋯ |
L(s) = 1 | + (−0.0340 + 0.999i)2-s + 1.04i·3-s + (−0.997 − 0.0680i)4-s − 0.447i·5-s + (−1.04 − 0.0354i)6-s + 1.75·7-s + (0.101 − 0.994i)8-s − 0.0868·9-s + (0.446 + 0.0152i)10-s − 1.54i·11-s + (0.0708 − 1.04i)12-s + 0.214i·13-s + (−0.0596 + 1.75i)14-s + 0.466·15-s + (0.990 + 0.135i)16-s + 1.91·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.101 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.101 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29279 + 1.16712i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29279 + 1.16712i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0481 - 1.41i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 - 1.80iT - 3T^{2} \) |
| 7 | \( 1 - 4.63T + 7T^{2} \) |
| 11 | \( 1 + 5.12iT - 11T^{2} \) |
| 13 | \( 1 - 0.771iT - 13T^{2} \) |
| 17 | \( 1 - 7.88T + 17T^{2} \) |
| 23 | \( 1 - 1.39T + 23T^{2} \) |
| 29 | \( 1 + 6.35iT - 29T^{2} \) |
| 31 | \( 1 + 6.78T + 31T^{2} \) |
| 37 | \( 1 + 5.45iT - 37T^{2} \) |
| 41 | \( 1 + 6.96T + 41T^{2} \) |
| 43 | \( 1 + 1.29iT - 43T^{2} \) |
| 47 | \( 1 + 8.44T + 47T^{2} \) |
| 53 | \( 1 + 1.75iT - 53T^{2} \) |
| 59 | \( 1 - 5.88iT - 59T^{2} \) |
| 61 | \( 1 - 14.0iT - 61T^{2} \) |
| 67 | \( 1 - 9.05iT - 67T^{2} \) |
| 71 | \( 1 - 4.63T + 71T^{2} \) |
| 73 | \( 1 + 3.15T + 73T^{2} \) |
| 79 | \( 1 - 1.28T + 79T^{2} \) |
| 83 | \( 1 - 9.44iT - 83T^{2} \) |
| 89 | \( 1 - 3.77T + 89T^{2} \) |
| 97 | \( 1 + 5.71T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39351388880636436957087020649, −9.507871278559247361736301437482, −8.640575914791010336233316010144, −8.118165896157281909561755568608, −7.28045196511660716907085977640, −5.63981651132920732023349553863, −5.35538347909763770511507077343, −4.36869145606800939553708698067, −3.54403616923735711846080737778, −1.17861772057116507409544460501,
1.46031354562552306355551074854, 1.86992004043510032488339265924, 3.35183088877349145073679294897, 4.70575958033117414719083208776, 5.35116949093056796078442921256, 6.93412870538218344025376803099, 7.79742846027218046757046251003, 8.129698218715769112496923174052, 9.516439150346862675225986944312, 10.28066668809285113589518069975