L(s) = 1 | + (−0.188 − 1.40i)2-s − 0.0766i·3-s + (−1.92 + 0.528i)4-s − i·5-s + (−0.107 + 0.0144i)6-s + 1.59·7-s + (1.10 + 2.60i)8-s + 2.99·9-s + (−1.40 + 0.188i)10-s − 0.418i·11-s + (0.0404 + 0.147i)12-s + 6.12i·13-s + (−0.301 − 2.24i)14-s − 0.0766·15-s + (3.44 − 2.03i)16-s + 2.23·17-s + ⋯ |
L(s) = 1 | + (−0.133 − 0.991i)2-s − 0.0442i·3-s + (−0.964 + 0.264i)4-s − 0.447i·5-s + (−0.0438 + 0.00589i)6-s + 0.604·7-s + (0.390 + 0.920i)8-s + 0.998·9-s + (−0.443 + 0.0595i)10-s − 0.126i·11-s + (0.0116 + 0.0426i)12-s + 1.69i·13-s + (−0.0805 − 0.599i)14-s − 0.0197·15-s + (0.860 − 0.509i)16-s + 0.541·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.390 + 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.390 + 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.26753 - 0.839572i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.26753 - 0.839572i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.188 + 1.40i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 0.0766iT - 3T^{2} \) |
| 7 | \( 1 - 1.59T + 7T^{2} \) |
| 11 | \( 1 + 0.418iT - 11T^{2} \) |
| 13 | \( 1 - 6.12iT - 13T^{2} \) |
| 17 | \( 1 - 2.23T + 17T^{2} \) |
| 23 | \( 1 - 4.81T + 23T^{2} \) |
| 29 | \( 1 - 4.65iT - 29T^{2} \) |
| 31 | \( 1 - 1.44T + 31T^{2} \) |
| 37 | \( 1 + 10.2iT - 37T^{2} \) |
| 41 | \( 1 + 0.923T + 41T^{2} \) |
| 43 | \( 1 + 4.94iT - 43T^{2} \) |
| 47 | \( 1 - 9.79T + 47T^{2} \) |
| 53 | \( 1 + 3.92iT - 53T^{2} \) |
| 59 | \( 1 + 8.15iT - 59T^{2} \) |
| 61 | \( 1 - 10.8iT - 61T^{2} \) |
| 67 | \( 1 + 5.14iT - 67T^{2} \) |
| 71 | \( 1 - 4.56T + 71T^{2} \) |
| 73 | \( 1 - 3.75T + 73T^{2} \) |
| 79 | \( 1 + 14.8T + 79T^{2} \) |
| 83 | \( 1 + 0.561iT - 83T^{2} \) |
| 89 | \( 1 + 1.07T + 89T^{2} \) |
| 97 | \( 1 + 6.13T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26249641557970528316262303602, −9.241265245935919799215138511524, −8.882850869974599540661535988623, −7.71709210843888434402102367554, −6.87358408475116798696811988378, −5.32337348041074503923634020213, −4.52232999594909175598622500035, −3.73560145401401573548446549224, −2.14691569334743990670934507387, −1.18731237410922140904475646398,
1.13946885672014736048374332977, 3.11094808353916089716517270157, 4.36370677348949516020779662473, 5.22943935392109102302121949615, 6.13955092439360437093662513774, 7.17978666109328950513225220602, 7.80170359858889633334303662903, 8.486952849976548941558847730301, 9.775789439426873928589550733600, 10.18636339451533394058253894961