| L(s) = 1 | + (−0.676 + 1.24i)2-s − 1.70i·3-s + (−1.08 − 1.67i)4-s − i·5-s + (2.11 + 1.15i)6-s + 1.91·7-s + (2.82 − 0.212i)8-s + 0.104·9-s + (1.24 + 0.676i)10-s + 4.53i·11-s + (−2.85 + 1.84i)12-s + 3.96i·13-s + (−1.29 + 2.38i)14-s − 1.70·15-s + (−1.64 + 3.64i)16-s + 1.87·17-s + ⋯ |
| L(s) = 1 | + (−0.478 + 0.878i)2-s − 0.982i·3-s + (−0.542 − 0.839i)4-s − 0.447i·5-s + (0.862 + 0.469i)6-s + 0.724·7-s + (0.997 − 0.0752i)8-s + 0.0348·9-s + (0.392 + 0.213i)10-s + 1.36i·11-s + (−0.825 + 0.533i)12-s + 1.10i·13-s + (−0.346 + 0.636i)14-s − 0.439·15-s + (−0.410 + 0.911i)16-s + 0.454·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0752i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0752i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.32600 + 0.0499350i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.32600 + 0.0499350i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.676 - 1.24i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
| good | 3 | \( 1 + 1.70iT - 3T^{2} \) |
| 7 | \( 1 - 1.91T + 7T^{2} \) |
| 11 | \( 1 - 4.53iT - 11T^{2} \) |
| 13 | \( 1 - 3.96iT - 13T^{2} \) |
| 17 | \( 1 - 1.87T + 17T^{2} \) |
| 23 | \( 1 - 5.88T + 23T^{2} \) |
| 29 | \( 1 + 9.11iT - 29T^{2} \) |
| 31 | \( 1 - 10.2T + 31T^{2} \) |
| 37 | \( 1 - 4.77iT - 37T^{2} \) |
| 41 | \( 1 - 1.03T + 41T^{2} \) |
| 43 | \( 1 - 6.88iT - 43T^{2} \) |
| 47 | \( 1 + 8.52T + 47T^{2} \) |
| 53 | \( 1 + 4.21iT - 53T^{2} \) |
| 59 | \( 1 + 5.57iT - 59T^{2} \) |
| 61 | \( 1 + 1.67iT - 61T^{2} \) |
| 67 | \( 1 + 8.44iT - 67T^{2} \) |
| 71 | \( 1 - 13.9T + 71T^{2} \) |
| 73 | \( 1 + 7.89T + 73T^{2} \) |
| 79 | \( 1 - 6.65T + 79T^{2} \) |
| 83 | \( 1 - 8.65iT - 83T^{2} \) |
| 89 | \( 1 + 4.77T + 89T^{2} \) |
| 97 | \( 1 + 3.50T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.893988609551721675209627617173, −9.507625879926170673584227656110, −8.231797432074873260824077373263, −7.84353970680486682514898015525, −6.86255446743692611456681358656, −6.38397891276095312323927512643, −4.88409310523455659255547230682, −4.47962353864832269409528771288, −2.06605282190983943160543551931, −1.14283272180485575446405310001,
1.11715887439014112621510139210, 2.93985423284514253398154273255, 3.53016684690487222075131785832, 4.72654657046455120923912863339, 5.53958790929752704784458459656, 7.09227045879367523670219534629, 8.137161008645960112380038341480, 8.724363385000619986409134410433, 9.680940592665310556377917605028, 10.60569427086020552146496775895