L(s) = 1 | + (−0.750 + 1.19i)2-s − 1.80i·3-s + (−0.874 − 1.79i)4-s + i·5-s + (2.15 + 1.35i)6-s + 4.97·7-s + (2.81 + 0.301i)8-s − 0.244·9-s + (−1.19 − 0.750i)10-s − 5.55i·11-s + (−3.23 + 1.57i)12-s + 5.33i·13-s + (−3.73 + 5.96i)14-s + 1.80·15-s + (−2.47 + 3.14i)16-s − 0.586·17-s + ⋯ |
L(s) = 1 | + (−0.530 + 0.847i)2-s − 1.03i·3-s + (−0.437 − 0.899i)4-s + 0.447i·5-s + (0.881 + 0.551i)6-s + 1.88·7-s + (0.994 + 0.106i)8-s − 0.0814·9-s + (−0.379 − 0.237i)10-s − 1.67i·11-s + (−0.935 + 0.454i)12-s + 1.47i·13-s + (−0.997 + 1.59i)14-s + 0.465·15-s + (−0.617 + 0.786i)16-s − 0.142·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 + 0.106i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 + 0.106i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43442 - 0.0766032i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43442 - 0.0766032i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.750 - 1.19i)T \) |
| 5 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 1.80iT - 3T^{2} \) |
| 7 | \( 1 - 4.97T + 7T^{2} \) |
| 11 | \( 1 + 5.55iT - 11T^{2} \) |
| 13 | \( 1 - 5.33iT - 13T^{2} \) |
| 17 | \( 1 + 0.586T + 17T^{2} \) |
| 23 | \( 1 - 1.77T + 23T^{2} \) |
| 29 | \( 1 - 7.19iT - 29T^{2} \) |
| 31 | \( 1 + 2.10T + 31T^{2} \) |
| 37 | \( 1 + 3.39iT - 37T^{2} \) |
| 41 | \( 1 - 5.88T + 41T^{2} \) |
| 43 | \( 1 + 2.50iT - 43T^{2} \) |
| 47 | \( 1 - 6.94T + 47T^{2} \) |
| 53 | \( 1 + 11.8iT - 53T^{2} \) |
| 59 | \( 1 + 5.63iT - 59T^{2} \) |
| 61 | \( 1 - 2.34iT - 61T^{2} \) |
| 67 | \( 1 - 12.1iT - 67T^{2} \) |
| 71 | \( 1 + 6.57T + 71T^{2} \) |
| 73 | \( 1 + 1.31T + 73T^{2} \) |
| 79 | \( 1 + 0.202T + 79T^{2} \) |
| 83 | \( 1 + 8.37iT - 83T^{2} \) |
| 89 | \( 1 + 12.2T + 89T^{2} \) |
| 97 | \( 1 - 12.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42210643582348019827151206298, −8.927201883289107393866055535293, −8.543499538473168286650359389281, −7.59986816593401098628202757302, −7.06941796963800417671679599220, −6.13990360587783118986427147190, −5.23772070239845637352497317029, −4.10678810162614372790523667437, −2.04866558517961946796977439017, −1.13549560733304056046898369341,
1.32225839440192098620038276264, 2.51607449334890693920808477555, 4.14678860304199986320708806844, 4.61111360795213450378197554947, 5.33769384809842170507039004648, 7.48409625355587028866122468507, 7.87069400086105616449470635487, 8.895900328358064932199956416021, 9.621116886124639451051875697513, 10.44320827859013889639967549534