L(s) = 1 | + (−1.38 − 0.299i)2-s − 2.26i·3-s + (1.82 + 0.828i)4-s − i·5-s + (−0.678 + 3.12i)6-s − 1.28·7-s + (−2.26 − 1.68i)8-s − 2.12·9-s + (−0.299 + 1.38i)10-s − 6.52i·11-s + (1.87 − 4.12i)12-s + 5.04i·13-s + (1.77 + 0.384i)14-s − 2.26·15-s + (2.62 + 3.01i)16-s − 3.98·17-s + ⋯ |
L(s) = 1 | + (−0.977 − 0.211i)2-s − 1.30i·3-s + (0.910 + 0.414i)4-s − 0.447i·5-s + (−0.276 + 1.27i)6-s − 0.484·7-s + (−0.801 − 0.597i)8-s − 0.708·9-s + (−0.0947 + 0.437i)10-s − 1.96i·11-s + (0.541 − 1.18i)12-s + 1.39i·13-s + (0.473 + 0.102i)14-s − 0.584·15-s + (0.657 + 0.753i)16-s − 0.966·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.597i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.801 - 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.149926 + 0.452132i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.149926 + 0.452132i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.38 + 0.299i)T \) |
| 5 | \( 1 + iT \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 2.26iT - 3T^{2} \) |
| 7 | \( 1 + 1.28T + 7T^{2} \) |
| 11 | \( 1 + 6.52iT - 11T^{2} \) |
| 13 | \( 1 - 5.04iT - 13T^{2} \) |
| 17 | \( 1 + 3.98T + 17T^{2} \) |
| 23 | \( 1 + 3.63T + 23T^{2} \) |
| 29 | \( 1 + 0.168iT - 29T^{2} \) |
| 31 | \( 1 + 3.93T + 31T^{2} \) |
| 37 | \( 1 + 9.41iT - 37T^{2} \) |
| 41 | \( 1 - 8.23T + 41T^{2} \) |
| 43 | \( 1 - 9.44iT - 43T^{2} \) |
| 47 | \( 1 + 3.01T + 47T^{2} \) |
| 53 | \( 1 - 7.82iT - 53T^{2} \) |
| 59 | \( 1 - 2.25iT - 59T^{2} \) |
| 61 | \( 1 - 3.69iT - 61T^{2} \) |
| 67 | \( 1 + 12.0iT - 67T^{2} \) |
| 71 | \( 1 - 1.36T + 71T^{2} \) |
| 73 | \( 1 + 9.86T + 73T^{2} \) |
| 79 | \( 1 - 14.7T + 79T^{2} \) |
| 83 | \( 1 - 6.95iT - 83T^{2} \) |
| 89 | \( 1 + 17.6T + 89T^{2} \) |
| 97 | \( 1 - 3.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.474791079431210499903141485123, −8.934486644016583883144074416426, −8.167674030435701436378005572489, −7.34560558098709001992711686799, −6.40586130150107192234867251204, −5.98442489177108912470031109760, −4.01049307581417467213283845739, −2.67163868848234100129934614775, −1.56944940011450875060780900056, −0.32018680305922310483599005057,
2.12909397495295400116872258101, 3.34350799697073299949693710289, 4.54323052421887874453393945212, 5.55005176431401332085039913018, 6.68381980711592026925561197477, 7.45347365498116490794460716687, 8.439289237601933789366584102975, 9.507990326683261020264286120893, 9.954601224538915456145525363136, 10.40828993078677405201602703773