Properties

Label 2-76-19.2-c2-0-0
Degree $2$
Conductor $76$
Sign $-0.983 - 0.179i$
Analytic cond. $2.07085$
Root an. cond. $1.43904$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.27 + 2.71i)3-s + (−5.68 + 2.07i)5-s + (−6.17 − 10.6i)7-s + (−0.612 − 3.47i)9-s + (−8.21 + 14.2i)11-s + (12.0 + 14.3i)13-s + (7.33 − 20.1i)15-s + (−0.283 + 1.60i)17-s + (−17.9 − 6.19i)19-s + (43.0 + 7.58i)21-s + (21.0 + 7.64i)23-s + (8.93 − 7.49i)25-s + (−16.7 − 9.68i)27-s + (13.0 − 2.30i)29-s + (−21.3 + 12.3i)31-s + ⋯
L(s)  = 1  + (−0.758 + 0.903i)3-s + (−1.13 + 0.414i)5-s + (−0.881 − 1.52i)7-s + (−0.0681 − 0.386i)9-s + (−0.747 + 1.29i)11-s + (0.925 + 1.10i)13-s + (0.488 − 1.34i)15-s + (−0.0166 + 0.0944i)17-s + (−0.945 − 0.325i)19-s + (2.04 + 0.361i)21-s + (0.913 + 0.332i)23-s + (0.357 − 0.299i)25-s + (−0.621 − 0.358i)27-s + (0.450 − 0.0794i)29-s + (−0.687 + 0.397i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.983 - 0.179i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.983 - 0.179i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76\)    =    \(2^{2} \cdot 19\)
Sign: $-0.983 - 0.179i$
Analytic conductor: \(2.07085\)
Root analytic conductor: \(1.43904\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{76} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 76,\ (\ :1),\ -0.983 - 0.179i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0308096 + 0.340076i\)
\(L(\frac12)\) \(\approx\) \(0.0308096 + 0.340076i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + (17.9 + 6.19i)T \)
good3 \( 1 + (2.27 - 2.71i)T + (-1.56 - 8.86i)T^{2} \)
5 \( 1 + (5.68 - 2.07i)T + (19.1 - 16.0i)T^{2} \)
7 \( 1 + (6.17 + 10.6i)T + (-24.5 + 42.4i)T^{2} \)
11 \( 1 + (8.21 - 14.2i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (-12.0 - 14.3i)T + (-29.3 + 166. i)T^{2} \)
17 \( 1 + (0.283 - 1.60i)T + (-271. - 98.8i)T^{2} \)
23 \( 1 + (-21.0 - 7.64i)T + (405. + 340. i)T^{2} \)
29 \( 1 + (-13.0 + 2.30i)T + (790. - 287. i)T^{2} \)
31 \( 1 + (21.3 - 12.3i)T + (480.5 - 832. i)T^{2} \)
37 \( 1 + 29.5iT - 1.36e3T^{2} \)
41 \( 1 + (10.7 - 12.8i)T + (-291. - 1.65e3i)T^{2} \)
43 \( 1 + (-19.3 + 7.03i)T + (1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-3.01 - 17.0i)T + (-2.07e3 + 755. i)T^{2} \)
53 \( 1 + (13.7 - 37.7i)T + (-2.15e3 - 1.80e3i)T^{2} \)
59 \( 1 + (86.1 + 15.1i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (18.8 + 6.86i)T + (2.85e3 + 2.39e3i)T^{2} \)
67 \( 1 + (-42.6 + 7.52i)T + (4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (4.32 + 11.8i)T + (-3.86e3 + 3.24e3i)T^{2} \)
73 \( 1 + (-12.7 - 10.7i)T + (925. + 5.24e3i)T^{2} \)
79 \( 1 + (-13.3 + 15.8i)T + (-1.08e3 - 6.14e3i)T^{2} \)
83 \( 1 + (-61.6 - 106. i)T + (-3.44e3 + 5.96e3i)T^{2} \)
89 \( 1 + (-58.3 - 69.5i)T + (-1.37e3 + 7.80e3i)T^{2} \)
97 \( 1 + (111. + 19.6i)T + (8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13173416592506994616199494526, −13.65794441667978373034217706859, −12.50732577145629301081091795036, −11.00654141622059888019160563428, −10.70240080057069408389731962160, −9.483063579398634353329402121192, −7.57271767799850132434745856941, −6.65854530794868883842974792953, −4.58113272577552984358315359000, −3.79763181909757508725535297562, 0.31116020875949310310964376921, 3.20293418935195132536861900551, 5.53034302171466341549139395456, 6.35524137650244042648399577340, 8.034179972651514587242108030757, 8.821957958816107746250950070499, 10.81182714461707260278516728245, 11.77830639504161402132811023387, 12.65304759515222004333188378915, 13.16012248679701476328091398746

Graph of the $Z$-function along the critical line