L(s) = 1 | + (−3.53 − 6.12i)5-s + (10.8 − 15.0i)7-s + (−7.40 − 4.27i)11-s + (−45.3 + 26.1i)13-s − 38.9·17-s + 66.4i·19-s + (−173. + 100. i)23-s + (37.5 − 64.9i)25-s + (−52.9 − 30.5i)29-s + (116. − 67.2i)31-s + (−130. − 13.2i)35-s + 298.·37-s + (221. + 383. i)41-s + (26.1 − 45.2i)43-s + (−137. + 238. i)47-s + ⋯ |
L(s) = 1 | + (−0.316 − 0.547i)5-s + (0.584 − 0.811i)7-s + (−0.202 − 0.117i)11-s + (−0.967 + 0.558i)13-s − 0.555·17-s + 0.801i·19-s + (−1.57 + 0.910i)23-s + (0.300 − 0.519i)25-s + (−0.339 − 0.195i)29-s + (0.674 − 0.389i)31-s + (−0.629 − 0.0637i)35-s + 1.32·37-s + (0.842 + 1.45i)41-s + (0.0926 − 0.160i)43-s + (−0.427 + 0.740i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.108 - 0.994i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.108 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.7715608289\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7715608289\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-10.8 + 15.0i)T \) |
good | 5 | \( 1 + (3.53 + 6.12i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (7.40 + 4.27i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (45.3 - 26.1i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 38.9T + 4.91e3T^{2} \) |
| 19 | \( 1 - 66.4iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (173. - 100. i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (52.9 + 30.5i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-116. + 67.2i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 298.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-221. - 383. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-26.1 + 45.2i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (137. - 238. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 136. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (191. + 331. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-261. - 151. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-318. - 552. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 228. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.24e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + (100. - 174. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (323. - 560. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 826.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (17.0 + 9.85i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01706588368670490804681380717, −9.508795007847527516259605529336, −8.116598541729940502054190586695, −7.893103807741929450968024280393, −6.76417675084480066327070953478, −5.68258332047995297958678591691, −4.50684796879879519696843062875, −4.06314779714985638454968043193, −2.42299831409341232835666454984, −1.15861838796747705309875477393,
0.21981463436946615282340343921, 2.11288130581262755631612252513, 2.88411359696454882175159736371, 4.31128670546478764021631440762, 5.18360172631328141484980923020, 6.18411973599929973116528151453, 7.21067087218904670964113106198, 7.970602833055024252778953206092, 8.810315582975713464768122209078, 9.747366887358095687408978350485