L(s) = 1 | + (10.5 + 18.2i)5-s + (−4.11 − 18.0i)7-s + (21.5 + 12.4i)11-s + (−52.5 + 30.3i)13-s − 117.·17-s − 104. i·19-s + (17.4 − 10.0i)23-s + (−160. + 277. i)25-s + (24.2 + 14.0i)29-s + (−216. + 125. i)31-s + (286. − 265. i)35-s + 18.2·37-s + (−153. − 265. i)41-s + (74.5 − 129. i)43-s + (−108. + 188. i)47-s + ⋯ |
L(s) = 1 | + (0.944 + 1.63i)5-s + (−0.222 − 0.974i)7-s + (0.589 + 0.340i)11-s + (−1.12 + 0.647i)13-s − 1.67·17-s − 1.26i·19-s + (0.158 − 0.0915i)23-s + (−1.28 + 2.22i)25-s + (0.155 + 0.0897i)29-s + (−1.25 + 0.724i)31-s + (1.38 − 1.28i)35-s + 0.0809·37-s + (−0.583 − 1.00i)41-s + (0.264 − 0.457i)43-s + (−0.337 + 0.584i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 + 0.247i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.968 + 0.247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.4267284814\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4267284814\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (4.11 + 18.0i)T \) |
good | 5 | \( 1 + (-10.5 - 18.2i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-21.5 - 12.4i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (52.5 - 30.3i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 117.T + 4.91e3T^{2} \) |
| 19 | \( 1 + 104. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (-17.4 + 10.0i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-24.2 - 14.0i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (216. - 125. i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 - 18.2T + 5.06e4T^{2} \) |
| 41 | \( 1 + (153. + 265. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-74.5 + 129. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (108. - 188. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 116. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (-38.3 - 66.4i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-493. - 285. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (33.8 + 58.6i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 796. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 710. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + (40.0 - 69.3i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-57.6 + 99.8i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 1.05e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-444. - 256. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59629628325185188996290381430, −9.559766288354146878299779924443, −9.075521806371047082549437456016, −7.28774854399356749508095426525, −6.94719665906050304314954918948, −6.41609510698681617151346469025, −4.98894248046655906262565761498, −3.92066293547543950787921927786, −2.72519903372378378393290934345, −1.88926746281555011038452120785,
0.10317460867887725741266075875, 1.57273009320458801845526913670, 2.47975484161549947295497160408, 4.12585528743541069005284478219, 5.16600872331252453855084414323, 5.70521497268606395933325446795, 6.63288779180553832830639023356, 8.131888734202531220011723561454, 8.702145751673834665528581325558, 9.495743033496361101410964892086