L(s) = 1 | + (7.82 + 13.5i)5-s + (17.6 + 5.69i)7-s + (−34.2 − 19.7i)11-s + (−55.5 + 32.0i)13-s + 56.6·17-s + 117. i·19-s + (6.59 − 3.80i)23-s + (−59.9 + 103. i)25-s + (−39.8 − 22.9i)29-s + (−251. + 145. i)31-s + (60.6 + 283. i)35-s − 335.·37-s + (97.2 + 168. i)41-s + (152. − 263. i)43-s + (318. − 550. i)47-s + ⋯ |
L(s) = 1 | + (0.699 + 1.21i)5-s + (0.951 + 0.307i)7-s + (−0.937 − 0.541i)11-s + (−1.18 + 0.684i)13-s + 0.808·17-s + 1.41i·19-s + (0.0597 − 0.0345i)23-s + (−0.479 + 0.830i)25-s + (−0.254 − 0.147i)29-s + (−1.45 + 0.842i)31-s + (0.293 + 1.36i)35-s − 1.49·37-s + (0.370 + 0.641i)41-s + (0.540 − 0.935i)43-s + (0.987 − 1.70i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.875 - 0.484i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.875 - 0.484i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.497672887\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.497672887\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-17.6 - 5.69i)T \) |
good | 5 | \( 1 + (-7.82 - 13.5i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (34.2 + 19.7i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (55.5 - 32.0i)T + (1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 56.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 117. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (-6.59 + 3.80i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (39.8 + 22.9i)T + (1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (251. - 145. i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 335.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-97.2 - 168. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-152. + 263. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-318. + 550. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 274. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (258. + 448. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (142. + 82.1i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-368. - 637. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 599. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 214. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + (454. - 786. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (389. - 675. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 443.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (337. + 194. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43148973775599637421990647801, −9.637640049564871734974973306925, −8.540871872208536649719695185390, −7.60353476375223713822734427574, −6.95744551477443073278785303520, −5.69264420641277689835983806553, −5.24341929504268268480196236638, −3.71314200620863857902123488044, −2.56905775309427243391738397255, −1.75114864595254755776463202619,
0.37378231156413680275352991669, 1.61439638631621045534823297489, 2.67848749290736371881009233754, 4.41582529313076725896878560457, 5.14947848279315953665097388432, 5.59100303759791559225715667366, 7.32705578159394701522439492333, 7.73806526532204078717779910596, 8.852892675451359623704419931471, 9.519013131809707159745056522400