L(s) = 1 | + (2.20 − 3.82i)5-s + (13.5 − 12.6i)7-s + (59.1 − 34.1i)11-s + (29.9 + 17.3i)13-s − 21.8·17-s − 124. i·19-s + (−61.3 − 35.4i)23-s + (52.7 + 91.3i)25-s + (−187. + 108. i)29-s + (242. + 140. i)31-s + (−18.2 − 79.6i)35-s + 150.·37-s + (−136. + 236. i)41-s + (−136. − 236. i)43-s + (−97.3 − 168. i)47-s + ⋯ |
L(s) = 1 | + (0.197 − 0.341i)5-s + (0.732 − 0.681i)7-s + (1.62 − 0.936i)11-s + (0.639 + 0.369i)13-s − 0.311·17-s − 1.50i·19-s + (−0.556 − 0.321i)23-s + (0.422 + 0.731i)25-s + (−1.20 + 0.694i)29-s + (1.40 + 0.811i)31-s + (−0.0882 − 0.384i)35-s + 0.670·37-s + (−0.519 + 0.900i)41-s + (−0.484 − 0.839i)43-s + (−0.302 − 0.523i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.346 + 0.937i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.346 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.578797919\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.578797919\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-13.5 + 12.6i)T \) |
good | 5 | \( 1 + (-2.20 + 3.82i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-59.1 + 34.1i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-29.9 - 17.3i)T + (1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 21.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 124. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + (61.3 + 35.4i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (187. - 108. i)T + (1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-242. - 140. i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 - 150.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (136. - 236. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (136. + 236. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (97.3 + 168. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 520. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + (301. - 521. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-145. + 84.0i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-371. + 643. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 758. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.15e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 + (-78.6 - 136. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-137. - 237. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.04e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-211. + 122. i)T + (4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.634802744837471301683521528876, −8.843502570660455704535128557975, −8.318449860892761276974170524563, −6.97421762598587910831862046631, −6.44592462895345155983156036106, −5.18562718303057286541687168368, −4.28285820429885091996995662680, −3.36111223636476747243438586614, −1.66943332189690130831154062055, −0.78379525824557252522653894292,
1.34507756856279523156559571551, 2.25472518542277646081379763207, 3.74927527130797951405586238916, 4.56407365226595448699438767569, 5.91687325403459979363350676269, 6.38758777109994381648376626015, 7.64955892982106076115295141468, 8.360816318791267501115366442087, 9.352537953280986954216872317323, 9.987701231075955036609263159784