L(s) = 1 | + (5.19 + 9.00i)5-s + (−16.6 − 8.10i)7-s + (53.0 + 30.6i)11-s − 12.9i·13-s + (17.2 − 29.8i)17-s + (−29.2 + 16.8i)19-s + (37.4 − 21.6i)23-s + (8.44 − 14.6i)25-s + 62.7i·29-s + (2.36 + 1.36i)31-s + (−13.5 − 192. i)35-s + (162. + 281. i)37-s − 274.·41-s + 42.0·43-s + (103. + 179. i)47-s + ⋯ |
L(s) = 1 | + (0.465 + 0.805i)5-s + (−0.899 − 0.437i)7-s + (1.45 + 0.839i)11-s − 0.277i·13-s + (0.246 − 0.426i)17-s + (−0.352 + 0.203i)19-s + (0.339 − 0.196i)23-s + (0.0675 − 0.116i)25-s + 0.402i·29-s + (0.0136 + 0.00790i)31-s + (−0.0656 − 0.927i)35-s + (0.723 + 1.25i)37-s − 1.04·41-s + 0.149·43-s + (0.321 + 0.557i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.320 - 0.947i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.320 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.979311798\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.979311798\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (16.6 + 8.10i)T \) |
good | 5 | \( 1 + (-5.19 - 9.00i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-53.0 - 30.6i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 12.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-17.2 + 29.8i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (29.2 - 16.8i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-37.4 + 21.6i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 62.7iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-2.36 - 1.36i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-162. - 281. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 274.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 42.0T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-103. - 179. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-174. - 100. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-29.4 + 50.9i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-176. + 101. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (288. - 499. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 658. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-414. - 239. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-109. - 189. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.03e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-347. - 601. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 498. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.971302200736841412975698932912, −9.562477131378916371378383973042, −8.501553708389372682725532391055, −7.14604688793503941587453016384, −6.74483589203830851479954540122, −5.94816301633025762718855473134, −4.55449009695206524431316121088, −3.55244166961102238194581184499, −2.55882731826056423465880249974, −1.13796344091312212568622214545,
0.61363081667639528766752435429, 1.82287429097849120517522064615, 3.26944264231443439020510878864, 4.19932875060110366972459226690, 5.48498954513344070575869255796, 6.16899685158976924631155697587, 6.96867489053227994263163727315, 8.352193183177152338525843369853, 9.120255541079288572772560526577, 9.434229317768634894508448525584