L(s) = 1 | − 0.0103·5-s + (16.5 + 8.35i)7-s − 60.1i·11-s + 31.7i·13-s + 91.2·17-s + 12.6i·19-s + 86.0i·23-s − 124.·25-s − 122. i·29-s − 297. i·31-s + (−0.170 − 0.0863i)35-s + 159.·37-s + 182.·41-s − 95.7·43-s + 43.8·47-s + ⋯ |
L(s) = 1 | − 0.000923·5-s + (0.892 + 0.451i)7-s − 1.64i·11-s + 0.676i·13-s + 1.30·17-s + 0.152i·19-s + 0.780i·23-s − 0.999·25-s − 0.781i·29-s − 1.72i·31-s + (−0.000824 − 0.000416i)35-s + 0.706·37-s + 0.693·41-s − 0.339·43-s + 0.136·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.892 + 0.451i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.303707738\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.303707738\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-16.5 - 8.35i)T \) |
good | 5 | \( 1 + 0.0103T + 125T^{2} \) |
| 11 | \( 1 + 60.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 31.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 91.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 12.6iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 86.0iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 122. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 297. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 159.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 182.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 95.7T + 7.95e4T^{2} \) |
| 47 | \( 1 - 43.8T + 1.03e5T^{2} \) |
| 53 | \( 1 - 17.6iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 317.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 802. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 383.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 230. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 847. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 411.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.23e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.54e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.58e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.791448655727965731903936888149, −9.020786777821194519373604737128, −8.054824872361239835202102894993, −7.60468538185179765094161870685, −5.96738239811878680827185885865, −5.71849981215616663874676916116, −4.36495226810999486674679254391, −3.35010490705191859076322155437, −2.06160900694409199505477177784, −0.77481263774223699862861326896,
1.04590672830656873244839151110, 2.16605087907073793124379399827, 3.56578873119663151060073593537, 4.69287261106190091004482272362, 5.31842810605081875786013017050, 6.65650273987977170088564060054, 7.56268904153926579945232034240, 8.067871030148309658030391892426, 9.239931995902898494743495112326, 10.17974953582296012643236188979