L(s) = 1 | + 6.67·5-s + (−18.2 + 3.18i)7-s + 34.9i·11-s + 63.3i·13-s + 32.0·17-s − 125. i·19-s + 63.6i·23-s − 80.5·25-s − 303. i·29-s + 5.46i·31-s + (−121. + 21.2i)35-s + 45.0·37-s − 185.·41-s − 224.·43-s − 534.·47-s + ⋯ |
L(s) = 1 | + 0.596·5-s + (−0.985 + 0.171i)7-s + 0.957i·11-s + 1.35i·13-s + 0.457·17-s − 1.51i·19-s + 0.577i·23-s − 0.644·25-s − 1.94i·29-s + 0.0316i·31-s + (−0.587 + 0.102i)35-s + 0.200·37-s − 0.708·41-s − 0.797·43-s − 1.65·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.985 + 0.171i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.985 + 0.171i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.1684384048\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1684384048\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (18.2 - 3.18i)T \) |
good | 5 | \( 1 - 6.67T + 125T^{2} \) |
| 11 | \( 1 - 34.9iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 63.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 32.0T + 4.91e3T^{2} \) |
| 19 | \( 1 + 125. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 63.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 303. iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 5.46iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 45.0T + 5.06e4T^{2} \) |
| 41 | \( 1 + 185.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 224.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 534.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 373. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 701.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 74.5iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 425.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 936. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 957. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 129.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 719.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 274.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.35e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01884347642346180593075064260, −9.636752220054975150547499822317, −9.001966424552448220890959044190, −7.70244953876922751859477470289, −6.75884941433796954666894851114, −6.18915284482207245552738554032, −5.00342927958026826520400169694, −4.02940404958813724268136529637, −2.72438451795062612230855422431, −1.73167176159753396182963682256,
0.04374294762299419723920826598, 1.42357910474186637251231126710, 3.03230912447682203751448514994, 3.59154755976488573408930891563, 5.25223015220326991876975426272, 5.91559452350883421402640272988, 6.69709803396988334517817634652, 7.902822803217165502870053551926, 8.586357608678178996016541240153, 9.741099552014660458792394401647