L(s) = 1 | + (5.5 + 4.33i)7-s − 22·13-s + (18.5 + 32.0i)19-s + (−12.5 + 21.6i)25-s + (6.5 − 11.2i)31-s + (−13 − 22.5i)37-s − 61·43-s + (11.4 + 47.6i)49-s + (60.5 + 104. i)61-s + (−61 + 105. i)67-s + (−71.5 + 123. i)73-s + (71 + 122. i)79-s + (−121 − 95.2i)91-s + 167·97-s + (−97 − 168. i)103-s + ⋯ |
L(s) = 1 | + (0.785 + 0.618i)7-s − 1.69·13-s + (0.973 + 1.68i)19-s + (−0.5 + 0.866i)25-s + (0.209 − 0.363i)31-s + (−0.351 − 0.608i)37-s − 1.41·43-s + (0.234 + 0.972i)49-s + (0.991 + 1.71i)61-s + (−0.910 + 1.57i)67-s + (−0.979 + 1.69i)73-s + (0.898 + 1.55i)79-s + (−1.32 − 1.04i)91-s + 1.72·97-s + (−0.941 − 1.63i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.311 - 0.950i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.311 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.320505114\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.320505114\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-5.5 - 4.33i)T \) |
good | 5 | \( 1 + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 22T + 169T^{2} \) |
| 17 | \( 1 + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-18.5 - 32.0i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 + (-6.5 + 11.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (13 + 22.5i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 1.68e3T^{2} \) |
| 43 | \( 1 + 61T + 1.84e3T^{2} \) |
| 47 | \( 1 + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-60.5 - 104. i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (61 - 105. i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 5.04e3T^{2} \) |
| 73 | \( 1 + (71.5 - 123. i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (-71 - 122. i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 6.88e3T^{2} \) |
| 89 | \( 1 + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 - 167T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18180398838282078440602391957, −9.695009576894335720349513274368, −8.637015580607987953422656196747, −7.77675929563331017016381177584, −7.13858293028610247451920256356, −5.69940630553941643181161136372, −5.19138990918447882201297068147, −4.00933821217462990339506873754, −2.68019878585152872173924439207, −1.56330464382459191433941866165,
0.44599787284632263654718859506, 2.02133196854073560470015935113, 3.22112682922620523626041015282, 4.74309213082229478332193847537, 4.98700571114432381620092994309, 6.54983830522572604608383475915, 7.35554056574911177869694079634, 8.007935522325443373220525499277, 9.116348041821956451485137785688, 9.926258634754627123060549696431